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Abstract
Background: Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are believed to play key roles in the 
pathophysiology of coronary slow flow (CSF).

Objectives: This study aimed to explore the complex biological networks involved in CSF using whole-transcriptome 
sequencing, with the goal of identifying potential diagnostic biomarkers and therapeutic targets.

Methods: Whole-transcriptome sequencing was performed on samples from three patients with CSF and three matched 
control subjects. A p-value < 0.05 was considered statistically significant.

Results: A total of 854 lncRNAs were differentially expressed, with 425 downregulated and 429 upregulated. KEGG 
pathway analysis showed significant enrichment of lncRNAs in pathways associated with cardiovascular diseases, 
endocrine and metabolic disorders, and neurodegenerative disease progression. Additionally, 1,999 mRNAs were 
differentially expressed, including 990 downregulated and 1,009 upregulated. Molecular function analysis identified 
roles in protein binding, regulation of kinase activity, ubiquitin-protein transferase activity, and RNA binding. KEGG 
analysis indicated that the differentially expressed mRNAs were primarily involved in autophagy, measles, ubiquitin-
mediated proteolysis, the NOD-like receptor signaling pathway, the tumor necrosis factor (TNF) signaling pathway, the 
toll-like receptor (TLR) signaling pathway, and the NF-κB signaling pathway.

Conclusions: Differentially expressed mRNAs were significantly enriched in KEGG pathways related to autophagy, 
measles, and ubiquitin-mediated degradation, as well as in signaling cascades involving NOD-like receptors, TNF, TLR, 
and NF-κB. Further studies are required to validate these findings.
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Introduction
Coronary slow flow (CSF) is thought to be closely 

associated with the onset of various manifestations of the 
CSF phenomenon.1-5 This condition has been linked to 
several contributing factors, including psychiatric disorders, 
serum salusin-β levels, homocysteine, cystatin C, body 
mass index, and systemic immune-inflammation.2,3,6,7 The 
inflammatory response may play a central role in multiple 
pathophysiological processes, such as microvascular 
obstruction and microthrombus formation, which are 
considered key elements in the pathogenesis of coronary 
microcirculatory dysfunction.8-11

Recent studies have shown that certain long non-coding 
RNAs (lncRNAs) can regulate downstream inflammatory 

factors, thereby influencing the development of CSF.9,12 
Danaii et al. proposed that microRNAs (miRNAs) may serve 
as potential biomarkers for diagnosing CSF and monitoring 
the progression of coronary artery disease (CAD) in affected 
patients.13 Based on these findings, lncRNAs and miRNAs 
appear to play significant roles in the pathophysiology of 
CSF. However, given the complexity of the condition and the 
diverse functions of non-coding RNAs in the cardiovascular 
system, focusing on only a few molecules may not provide a 
comprehensive understanding of the underlying mechanisms.

Whole-transcriptome analysis offers a broader perspective 
by enabling the identification of key lncRNAs and miRNAs 
involved in CSF and their potential interactions. This approach 
may contribute to a deeper understanding of the molecular 
basis of CSF and support future clinical applications.

RNA sequencing (RNA-seq) has been widely used to 
investigate gene expression profiles in cardiac tissues and 
cells, providing insights into molecular changes associated 
with conditions such as CSF and Takotsubo syndrome, a 
form of coronary microvascular disease.14,15 A transcriptomic 
study of CSF using RNA extracted from peripheral blood 
monocytes revealed differential gene expression patterns and 
an association with inflammation.16 However, the pathogenesis 
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Central Illustration: Transcriptome High-Throughput Sequencing Analysis of lncRNA and mRNA  
Expression in Patients with Coronary Slow Flow 
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CONCLUSION
	 Differentially expressed mRNAs showed significant enrichment in KEGG pathways essential for autophagy, measles, and ubiquitin-
mediated degradation. Notably, significant enrichment was also observed in NOD-like receptor, TNF, toll-like receptor, and NF-κB 
signaling pathways.

	 This study confirmed that lncRNAs, with sequences over 200 base pairs, play crucial roles in CSF. The potential mechanisms 
may primarily involve inflammatory pathway modulation and endothelial functional regulation.

Participants

3 controls 3 patients with CSF

Objetives

To elucidate the complex roles of lncRNAs and 
miRNAs in patients with coronary slow flow 
(CSF) and to identify potential therapeutic and 
diagnostic biomarkers.

Results
	 425 lncRNAs are downregulated and 429 are upregulated.
	 lncRNA enrichment was observed in key pathways related to cardiovascular 

diseases, endocrine and metabolic health, and the progression of 
neurodegenerative disorders.

	 990 mRNAs are downregulated and 1,009 are upregulated.
	 Differentially expressed mRNAs are primarily enriched in pathways 

such as autophagy, measles, ubiquitin-mediated proteolysis, NOD-like 
receptor signaling, TNF signaling, toll-like receptor signaling, and NF-κB 
signaling.

	 Molecular function analysis identified key roles in protein binding, kinase 
activity regulation, ubiquitin-protein transferase activity, and RNA binding.

Methods
Method of analysis: next-generation sequencing for differential lncRNA 

and mRNA expression

of CSF remains complex and poorly understood, and only a 
few studies to date have applied transcriptome sequencing 
specifically to CSF.

Therefore, the present study aimed to investigate the 
transcriptomic landscape of patients with CSF through high-
throughput sequencing of peripheral blood leukocytes in 
order to identify genes and pathways potentially involved in 
the development of CSF.

Methods

Subjects
This study, supported by grant number 2016XE0113, was 

conducted in accordance with the ethical principles outlined 
in the Declaration of Helsinki. All participants were fully 
informed about the study objectives and provided written 
informed consent. The study protocol was approved by 
the Research Ethics Committee, ensuring the protection of 
participants’ rights and welfare.

Three patients diagnosed with CSF based on coronary 
angiography, along with three individuals with normal coronary 
angiography findings, were enrolled at the Traditional Chinese 
Medical Hospital of Xinjiang Uygur Autonomous Region. 
These individuals were assigned to the case group and control 
group, respectively. All participants were initially suspected 
of having uncomplicated coronary heart disease and had no 
history of diabetes, cardiomyopathy, vasculitis, connective 
tissue disorders, or endocrine diseases.

Diagnostic criteria
CSF was defined as a delayed perfusion of any major distal 

coronary vessel exceeding three cardiac cycles, as observed 
during coronary angiography.

Exclusion criteria
Participants were selected according to strict inclusion and 

exclusion criteria to ensure the reliability and validity of the 
study findings. Patients were excluded if they presented with 
hypotension (systolic blood pressure ≤ 90 mmHg at the time 
of angiography) in the absence of vasodilator medication use, 
or if they had a heart rate < 60 beats per minute without the 
influence of heart rate–modifying drugs. Individuals who had 
experienced an acute myocardial infarction or acute coronary 
syndrome — including unstable angina pectoris — within 
the previous month were also excluded. In addition, patients 
with any coronary artery stenosis > 50% were not eligible for 
inclusion. Clinical data, laboratory indices, and blood samples 
were collected and analyzed from all participants.

Experimental methods

Database construction and sequencing process

Total RNA was extracted from blood samples following 
centrifugation, lysis, and precipitation. The integrity of 
the isolated RNA was evaluated using standard analytical 
procedures, followed by a quality assessment. Ribosomal RNAs 
(rRNAs) were subsequently removed to enrich for mRNAs 
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and non-coding RNAs. The remaining RNA was fragmented 
and reverse-transcribed into complementary DNA (cDNA). 
Next, blunt-ended cDNAs underwent adaptor ligation and 
tailing. The resulting cDNA library was size-selected using 
agarose gel electrophoresis, and the band corresponding to 
the target size was excised. The selected cDNA fragments 
were then amplified by polymerase chain reaction (PCR) and 
subjected to high-throughput sequencing using an automated 
sequencing platform.

Sample collection and processing of whole blood 
specimens

The initial step involved accurate documentation and 
identification of 4 mL whole blood samples collected from 
diagnosed patients, with each sample labeled according to 
the patient registry. Following centrifugation, plasma and 
cellular components were separated. The plasma, located 
in the upper layer after centrifugation, was transferred into 
1.5 mL Eppendorf tubes, with each tube receiving 400 μL of 
plasma. The tubes were then sealed and stored in an ultra-low 
temperature freezer at –80°C for preservation.

Centrifugation was performed at 3,000 rpm for 10 minutes 
to ensure effective separation of plasma. The resulting cellular 
pellet was resuspended in ammonium-chloride-potassium 
(ACK) Lysis Buffer (Bioseth, Zhenjiang, China) and transferred 
into fresh 1.5 mL Eppendorf tubes. Each patient’s pellet was 
evenly divided into two groups for further analysis, ensuring 
sample integrity for subsequent procedures.

The Eppendorf tubes containing the resuspended 
cells were incubated at room temperature for 5 minutes 
to promote lysis. Centrifugation was then carried out to 
separate the components. To improve lysis efficiency, 
treatment with ACK Lysis Buffer was repeated two to three 
times, ensuring thorough cell disruption. After the final lysis 
step, the samples were rinsed with physiological saline to 
remove residual buffer.

For RNA extraction, leukocytes in one set of 1.5 mL 
Eppendorf tubes were processed using a TRIzol-based 
resuspension–precipitation protocol with TRIzol reagent 
(Invitrogen, USA). Another set of leukocyte-containing tubes 
was left untreated and stored at –80°C for future use.

RNA sample testing
The integrity and purity of the RNA samples were evaluated 

through a multi-step quality control (QC) process. Initially, 
agarose gel electrophoresis was used to detect degradation 
and contamination. This method separates nucleic acid 
fragments by size, allowing for the visual assessment of RNA 
integrity. Next, spectrophotometric analysis was performed 
to determine RNA purity, with the A260/A280 ratio used as 
a standard indicator. High-precision quantification of RNA 
concentration was then conducted using the Qubit® 3.0 
Fluorometer, ensuring accurate measurement of RNA yield. 
Finally, the Agilent 2100 Bioanalyzer with the RNA Nano 6000 
Assay Kit was employed to assess RNA integrity. This analysis 
generated an RNA integrity number (RIN), which provides a 
quantitative measure of RNA quality.

Construction and testing of the library
For the lncRNA library construction, a 3-microgram 

sample of total RNA was chosen as the starting material. 
The ribosomal RNAs were subsequently removed from 
the samples with precision, facilitated by the Ribo-
Zero™ Gold Kit (Human/Mouse/Rat, Illumina, USA). 
Different index labels were selected respectively for 
library construction based on the operating instructions 
of the NEBNext Ultra Directional RNA Library Prep Kit 
for Illumina (NEB, Ipswich, USA). In simpler terms, the 
whole process of the library construction consisted of 
four parts. Firstly, starting with the essential step of rRNA 
removal, one should then proceed to select the pertinent 
reagent kits. After securing the mRNA, the application of a 
fragmentation buffer yields the desired mRNA fragments. 
Secondly, fragments were used as templates, then the first-
strand cDNA was synthesized. The second-strand cDNA 
synthesis was completed by adding RNase H and dNTPs 
(dUTP). Thirdly, the rRNAs were initially eliminated, after 
which a purification kit was employed to carry out the 
purification. This was followed by a cascade of detailed 
operations, including the integration of Basic Group A 
and the subsequent end repair. Finally, the target fragment 
in the agarose gel electrophoresis was recovered, and 
PCR amplification (Qiagen, Germany) was performed to 
complete the construction of the library.

Upon the culminat ion of l ibrary construct ion, 
quantitative dilution utilizing the Qubit 3.0 Fluorometer 
(Thermo Fisher Scientific, USA) was conducted, resulting 
in a library concentration adjusted to 1 ng/μL. With the 
library construction phase concluded, the Agilent 2100 
(Agilent, USA) was engaged to measure the insert size. 
Quantitative PCR (qPCR) was performed using the Bio-
RAD CFX96 (Bio-Rad, USA) fluorescent quantitative PCR 
instrument and the Bio-RAD iQ SYBR GRN Kit (Bio-Rad, 
USA). The effective concentration of the library was 
accurately quantified (effective concentration > 10 nM) 
to ensure the quality of the library. After qualified library 
detection, different libraries were pooled to the flow cell 
according to the requirements of effective concentration 
and target data volume. cBot clusters were sequenced 
using the Illumina high-throughput sequencing platform 
(NovaSeq 6000, Illumina, USA), and 150 bp paired-end 
reads were obtained. Subsequently, a chain of operations 
was implemented, such as the application of Basic Group 
A and the finalization of end repair. The library was then 
positioned for qPCR, provided the insert size aligned with 
expectations, with the library’s effective concentration 
required to surpass 10 nM to ensure its quality.

Machine sequencing
Once the library construction reached its final stage, 

the qualified libraries were adeptly pooled onto the flow 
cell, conforming to the designated effective concentration 
and the set sequencing goals. Thereafter, the samples 
underwent comprehensive transcriptome high-throughput 
sequencing analysis once the clusters were successfully 
established.
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Transcriptome high-throughput sequencing analysis

Data preprocessing and QC:
The raw reads generated from high-throughput sequencing 

were provided in FASTQ format. To obtain high-quality 
reads suitable for downstream analysis, quality filtering was 
performed. First, the fastp software17 was used for QC and 
adapter removal. Low-quality bases were filtered out, resulting 
in a set of high-quality clean reads. The clean reads were 
then compared against rRNA sequences using SortMeRNA 
software,18 and any matched reads were removed. The 
remaining reads were retained for subsequent analyses.

Genome alignment and transcript splicing:
Hisat219 (http://www.psc.edu/user-resources/software/

hisat2) was used to align the clean reads to the reference 
genome, with default parameters applied. Transcript 
assembly was performed using StringTie software, generating 
new transcript isoforms. These were compared against the 
reference genome annotation using Cuffcompare to identify 
known and novel transcripts.

Prediction of lncRNAs:
Most lncRNAs lack protein-coding potential. Transcripts 

with two or more exons and a length greater than 200 bp 
were selected. Candidate lncRNAs were identified through 
coding potential prediction using CPC, CNCI, Pfam, and PLEK.

Transcriptional quantification, differential expression 
analysis, functional enrichment, and cluster analysis:

Clean reads with rRNA removed were aligned to reference 
transcripts (mRNA and lncRNA) using Bowtie2,20 and the 
results were stored in binary alignment (BAM) files. eXpress 
was used to quantify transcript abundance, providing both 
read counts and fragments per kilobase of transcript per 
million (FPKM) values.

For experiments with biological replicates, data 
normalization was performed using the estimateSizeFactors 
function in the DESeq (2012) R package.21 Differential 
expression was assessed using the nbinomTest function 
to calculate p-values and fold changes. For experiments 
without biological replicates, differential expression analysis 
was conducted based on the edgeR package (http://www.
bioconductor.org/packages/release/bioc/html/edgeR.html),22 
using the negative binomial distribution test. Read counts were 
evaluated for statistical significance using a negative binomial 
(NB) test, and counts per million (CPM) values were used to 
estimate gene expression levels.

Differential genes with a p-value less than 0.05 were 
selected, and a hypergeometric distribution test was 
performed in R to conduct gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses. These analyses were used to identify the biological 
functions and pathways most affected by the differentially 
expressed genes (DEGs). Additionally, the pheatmap function 
in R was employed to perform unsupervised hierarchical 

clustering of the DEGs, and a heatmap was generated to 
visualize their expression patterns across different samples.

Alternative splicing, single nucleotide polymorphism 
(SNP), and INDEL analysis:

Alternative splicing analysis was conducted using ASprofile 
software.23 Samtools24 and BCFtools25 were used to identify 
SNP and INDEL sites. For details on the specific procedure, 
please refer to the Samtools website (http://samtools.
sourceforge.net/mpileup.shtml). All software was run using 
default parameters.

circRNA identification, quantification, and differential 
analysis:

Based on the circBase database,26 sequencing data were 
first analyzed using CIRI software27 to predict circRNAs. The 
predicted results were then compared with the database to 
identify both known and novel circRNAs. Overlapping genes 
were extracted and annotated based on the chromosomal 
positions of circRNAs.

CircRNA abundance was quantified using RPM (spliced 
reads per million reads). For experiments with biological 
replication, data normalization was performed using the 
estimateSizeFactors function in the DESeq (2012) R package, 
and p-values and fold change values were calculated using 
the nbinomTest function. For experiments without replication, 
differential expression was determined using the edgeR 
package (http://www.bioconductor.org/packages/release/bioc/
html/edgeR.html), based on the negative binomial distribution.

CircRNAs with p-values < 0.05 were considered significantly 
differentially expressed. GO and KEGG enrichment analyses 
were conducted based on overlapping genes to identify 
the biological functions and pathways most affected by the 
differentially expressed circRNAs. In addition, unsupervised 
hierarchical clustering was performed, and circRNA expression 
patterns across samples were visualized using a heat map.

Prediction of circRNA–miRNA target interactions:
Since circRNAs contain multiple miRNA binding sites, 

their interactions with miRNAs can be predicted using 
established miRNA target gene prediction tools. The function 
of a given circRNA can then be inferred based on the 
functional annotation of its associated miRNA target genes. For 
animal species, predictions were performed using miRanda 
software.28,29 For plant species, predictions were carried out 
using psRNATarget software.30

Sample size
As this study was in the exploratory phase, a sample size 

of n = 3 was adopted after careful consideration of cost-
effectiveness and discovery potential.

Statistical analysis
Differential expression of the same transcript among 

different samples was calculated using RNA-seq data. To 
assess expression variation, FoldChange was used to measure 
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the change in expression levels of a given transcript between 
two samples, while the p-value or false discovery rate (FDR) 
(adjusted p-value) was used to evaluate statistical significance. 
Each transcript’s p-value was calculated and adjusted for 
multiple testing. Transcripts were considered significantly 
differentially expressed if the FoldChange was greater than 2 
and the p-value was less than 0.05.

For comparisons with biological replication, gene 
differential expression levels were calculated using the negative 
binomial distribution test in the DESeq software package. The 
significance of read count differences was assessed using the 
NB distribution test. The basemean value was used to estimate 
gene expression levels.31 For comparisons without biological 
replication, the edgeR software package was used to analyze 
and calculate gene expression levels. The significance of read 
differences was tested using the NB distribution, and gene 
expression levels were estimated using the CPM value.

To discern variations among different samples, gene 
differential expression analysis is pivotal, as differences 
are primarily reflected at the transcript level. Therefore, 
identifying transcripts with differential gene expression 
should be prioritized. Subsequently, comprehensive KEGG 
pathway enrichment and GO functional enrichment analyses 
should be performed to investigate the biological pathways 
and functions affected. GO enrichment analysis categorizes 
genes into cellular component (CC), molecular function (MF), 
and biological process (BP), identifying significant biological 
functions associated with DEGs using Fisher’s exact test, with 
p < 0.05 indicating statistical significance. Similarly, KEGG 
enrichment analysis uses genomic data to identify enriched 
pathways, and is performed using the clusterProfiler package in 
RStudio (version 4.3.1; R Foundation for Statistical Computing, 
Vienna, Austria), with an FDR < 0.05 threshold.

Results
Central Illustration presents the most important data 

from this study. There were two experimental groups, each 
consisting of three individuals (one female and two males). The 
mean age was 56 years for the case group and 54 years for 
the control group. No notable comorbidities were identified 
in either group. The level of differential gene expression for 
each transcript was assessed using the DESeq software, and 
the significance of read count differences was evaluated using 
the NB test. Gene expression levels were estimated based on 
the basemean value.

Analysis of transcripts with differential expression of 
lncRNA

Among the 854 lncRNAs that displayed altered expression 
levels, 425 were downregulated, while 429 were upregulated. 
Figure 1 and Figure 2 present the moving average chart and 
the volcano plot, respectively, which visualize the differential 
expression patterns of the lncRNA transcripts.

Heat map of differential expression of lncRNA
The heat map, generated using the pheatmap package 

in R, demonstrated high similarity between samples within 

the same group, while significant inter-group differential 
expression was observed. Results are shown in Figure 3.

Functional enrichment analysis of target genes

A correlation analysis between lncRNAs and mRNAs was 
conducted to identify lncRNA-associated mRNA transcripts. 
Correlations were considered significant if the absolute 
value of the correlation coefficient exceeded 0.8 and the 

Figure 1 – Moving average chart of transcripts with differentially 
expressed lncRNAs.
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Figure 2 – Volcano plot of transcripts with differentially expressed 
lncRNAs. The plot displays log2(fold change) on the x-axis and  
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Figure 3 – Heat map of differentially expressed lncRNAs (C: control 
group; M: coronary slow flow group).
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Figure 4 – GO enrichment bar plot (top 48 terms). GO term names are shown on the x-axis; the number of associated genes is 
indicated on the right y-axis.

p-value was less than 0.05. Functional annotation, including 
GO and KEGG enrichment analyses, was performed on 
the mRNAs associated with each differentially expressed 
lncRNA. Calculations and plots were generated for each 
gene entry at the GO and KEGG level 2 categories, based 
on upregulation and downregulation status. See Figure 4 
and Figure 5, where R refers to the plotting environment.

Functional enrichment analysis was used to predict the 
target genes, identifying 48 key GO entries. The findings 
included metabolic processes and cellular metabolic 
processes in the BP category; intracellular organelles and 
cytoplasm within the CC category; and antioxidant activity, 
enzyme regulatory activity, and catalytic activity in the 
MF category. To further explore the potential functions 
of these lncRNAs, KEGG pathway analysis revealed that 
their differential expression was significantly enriched in 
pathways related to cardiovascular diseases, endocrine 
disorders, metabolic diseases, and neurodegenerative 
diseases. Top 20 differentially expressed lncRNAs are 
presented in Table 1.

Results of transcripts with differential mRNA expression

A total of 1,999 mRNAs were found to be differentially 
expressed, including 990 that were downregulated and 
1,009 that were upregulated. Figure 6 and Figure 7 display 
the moving average chart and the volcano plot, respectively, 
which illustrate the differential expression profiles of the 
mRNA transcripts.
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Figure 5 – KEGG enrichment plot. KEGG pathway names are displayed on the y-axis, and the percentage of associated genes is 
shown on the x-axis.
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Metabolism–Amino acid metabolism
Human Diseases–Substance dependence

Human Diseases–Neurodegenerative disease
Human Diseases–Infectious disease: viral

Human Diseases–Infectious disease: parasitic
Human Diseases–Infectious disease: bacterial

Human Disease area–Immune disease
Human Diseases–Endocrine and metabolic disease

Human Diseases–Drug resistance: antineoplastic
Human Diseases–Cardiovascular disease
Human Diseases–Cancer: specific types

Human Diseases–Cancer: overview
Genetic Information Processing–Translation

Genetic Information Processing–Transcription
Genetic Information Processing–Replication and repair

Environmental Information Processing–Signaling molecules and interaction
Environmental Information Processing–Signal transduction

Environmental Information Processing–Membrane transport
Cellular Processes–Transport and catabolism

Cellular Processes–Cellular community – eukaryotes
Cellular Processes–Cell motility

Cellular Processes–Cell growth and death
Genetic Information Processing–Folding, sorting and degradation

Functional analysis on transcripts with differential 
expression

GO enrichment analysis of differentially expressed 
transcripts:

The screening of GO entries for transcripts with a 
FoldChange greater than 2 resulted in the identification of 
1,985 entries significantly enriched among the differentially 
expressed mRNAs. Clustering analysis of the top 10 entries, 
ranked by decreasing –log10(p-values), primarily involved 
biological processes such as defense against viral invasion, 
inhibition of viral genome expression, type I interferon 
signaling pathway, disruption of mitochondrial polarization, 
and enhancement of protease function.

The differentially expressed mRNAs were also significantly 
enriched in 271 cellular components. The top 10 entries, 
based on decreasing –log10(p-values), included components 
such as the cytoplasm, nucleoplasm, Atg1/ULK1 kinase 
complex, nucleus, and phage assembly sites, as identified 
through clustering analysis.

Additionally, 531 molecular functions were found to 
be significantly enriched. The top 10 entries, ranked by 
decreasing –log10(p-values), revealed molecular functions 
such as protein binding, modulation of protein kinase activity, 
ubiquitin-protein transferase activity, and ribonucleic acid 
binding.

Refer to Figure 8 for the bar plot illustrating the top 30 
GO enrichment results. GO entries with transcriptional 
FoldChange greater than 2 were filtered separately for the 
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three categories, with the top 10 entries from each category 
prioritized based on their –log10(p-values) in descending order.

KEGG enrichment analysis and pathway network plotting 
of DEGs:

Following the screening of 20 pathway entries with a 
transcriptional FoldChange greater than 2, differentially 
expressed mRNAs were found to be significantly enriched 
in pathways related to autophagy, measles, the ubiquitin–
proteasome system, NOD-like receptor signaling, tumor 
necrosis factor (TNF) signaling, toll-like (TLR) signaling, and the 
NF-κB signaling pathway. Figure 9 presents a bubble plot of the 
top 20 KEGG enrichment results, with pathway entries ranked in 
descending order based on their corresponding –log10(p-values).

Top 20 differentially expressed mRNAs:

Table 2 displays the top 20 mRNAs with differential 
expression.

Discussion
Transcriptome high-throughput sequencing in this study 

revealed that a total of 854 lncRNAs were differentially 
expressed, with 425 downregulated and 429 upregulated. 
Functional enrichment analysis identified 48 core GO entries. 
Co-expression and co-localization predictions highlighted 
metabolic processes and cellular metabolism under BP, 

Table 1 – Top 20 differentially expressed lncRNAs in patients 
with CSF

lncRNA Regulation Fold change p-value

lnc-SLC46A2 Up 307.6339927 8.16 × 10-13

lnc-DCAF4L1 Up 301.9088015 2.37× 10-23

lnc-RAB23 Up 293.4177516 1.72 × 10-8

lnc-LIPI Up 270.2219717 0.03287567

lnc-IGF2BP3 Up 199.1040392 2.15 × 10-7

lnc-IFNGAS1 Up 139.3191716 0.013423961

lnc-METTL2B Up 98.3100766 0.018769756

lnc-POLR3K Up 95.02233003 0.001041257

lnc-SOWAHB Up 84.70402792 0.000120964

lnc-PRKAB2 Up 81.24009487 0.023770486

GAS5 Up 81.15583069 0.000277837

LINC01949 Down 0.019016197 5.39 × 10-6

lnc-CTSV Down 0.01855816 0.003755983

lnc-KCNE1B Down 0.016836927 0.013494903

lnc-WDR73 Down 0.016808486 0.012120027

LINC00535 Down 0.016156596 0.002651937

LINC00205 Down 0.012744693 0.000840344

TUG1 Down 0.012376483 0.014487006

lnc-SNRPN Down 0.009096652 0.003332174

lnc-PIGBOS1 Down 0.008201513 0.001535038

lnc-SPI1 Down 0.004864076 1.29 × 10-6

Figure 6 – Moving average chart of transcripts with differentially 
expressed mRNAs.
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and antioxidant activity, regulation of enzymatic activity, 
and catalytic activity under MF. Within the CC category, 
components such as cell junctions, extracellular matrix 
organelles, and intracellular organelles were correlated with 
the cytoplasm. KEGG analysis showed that differentially 
expressed lncRNAs were significantly enriched in pathways 
related to cardiovascular diseases, endocrine disorders, 
metabolic diseases, and neurodegenerative diseases.

LncRNAs are recognized for their involvement in both 
physiological and pathological processes, serving regulatory 
and structural functions in diverse biological activities, 
including genetic imprinting, epigenetic control, cellular 
proliferation, developmental processes, aging, and apoptosis, 
thus emerging as key modulators in numerous cardiovascular 
conditions.12,32 LncRNAs have been implicated in regulating 
CSF and its associated complications.12,32,33

In studies concerning DCAF4L1, the adjacent coding 
gene, which is a key component of the CUL4-DDB1 
ubiquitin ligase complex, has been shown to influence 
tumor progression by modulating cell cycle checkpoints 
and apoptotic signaling pathways. A lncRNA potentially 
transcribed at this locus, referred to as lnc-DCAF4L1 
(not yet officially annotated), is hypothesized to regulate 
immune inflammation. However, its precise mechanism 
requires experimental validation, such as through 
chromatin conformation capture (4C-seq).34

Notably, the classical lncRNA growth arrest-specific 
5 (GAS5) plays distinct roles within disease networks. It 
regulates immune factors such as IL-10 via the competing 
endogenous RNA (ceRNA) mechanism in autoimmune 
diseases, modulates the insulin signaling pathway in 
metabolic disorders, and contributes to neuroinflammatory 
processes by inf luencing microgl ia l  act ivat ion in 
neurodegenerative conditions. This multifunctionality 
positions GAS5 as a central molecular hub for cross-disease 
research. While variations in the expression of protein-
coding genes are acknowledged, further investigation is 
needed to elucidate their functional implications.35,36

Studies have shown that lncRNAs such as MALAT1 and 
NEAT1 play a role in promoting inflammatory responses in 
CSF through various molecular pathways.4,12,18 MALAT1 has 
been identified as a biomarker for predicting the no-reflow 
phenomenon during percutaneous coronary intervention 
(pPCI) and as a potential therapeutic target for CSF.37,38 
Additionally, the correlation between lncRNA AF131217.1 
levels and CSF has been investigated, suggesting a regulatory 
role for this lncRNA in CSF-induced inflammation through 
modulation of Krüppel-like factor 4 (KLF4).38 However, in 
the present study, MALAT1 and NEAT1 were not identified as 
having regulatory functions in patients with CSF.

Other differentially expressed lncRNAs identified in this 
study — including lnc-SLC46A2, lnc-RAB23, lnc-LIPI (Table 1), 

Figure 8 – GO enrichment bar plot (top 30 terms). Red bars represent the top 10 biological process terms, green bars the top 10 
cellular component terms, and blue bars the top 10 molecular function terms. GO term names are on the x-axis; –log10(p-value) 
is on the y-axis.
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excluding lnc-DCAF4L1 and GAS5 — have not been 
previously reported in the literature. The relationship between 
these lncRNAs and CSF remains unclear and requires further 
investigation to be validated. Additional research is needed to 
clarify the specific mechanisms by which lncRNAs contribute 
to CSF and to explore their potential as therapeutic targets.

Among the 1,999 differentially expressed mRNAs, 990 
were downregulated and 1,009 were upregulated. According 
to the GO clustering analysis of the top 10 entries, ranked 
by –log10(p-value), the main biological processes included 
response to viral infection, negative regulation of viral genome 
expression, type I interferon signaling pathway, mitochondrial 

Figure 9 – KEGG enrichment bubble plot (top 20 terms). KEGG pathway names are shown on the y-axis; p-values are displayed on the 
x-axis. Bubble size reflects the number of associated genes.
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Table 2 – Top 20 differentially expressed mRNAs in patients 
with CSF

Gene Regulation Fold change p-value

SIRPB1 Up 1424.292887 8.76 × 10-5

OTOF Up 749.2769265 0.033541446

CDC27 Up 372.4377459 0.000308112

FCGR1B Up 293.4635502 0.002402462

HLA-DRB4 Up 288.483249 0.000897273

MEF2C Up 279.7159676 7.28 × 10-9

ATG13 Up 241.9462662 0.001107754

EPB41 Up 173.0302956 0.004740905

ZNF45 Up 140.5873565 0.000840983

SLC39A9 Up 136.1707782 5.10 × 10-5

PBRM1 Down 0.007401108 6.99 × 10-5

P2RX5 Down 0.006490159 0.001694951

EPB41 Down 0.006205606 0.033667873

SRRM1 Down 0.006097372 1.07 × 10-11

ZNF445 Down 0.006009509 0.005438717

CCR3 Down 0.005964356 0.004797579

ALG13 Down 0.004730269 6.94 × 10-7

ABCA7 Down 0.004689293 0.019145994

KHSRP Down 0.004116791 0.00809256

MAP4K4 Down 0.00314662 4.34 × 10-6

depolarization, and activation of protease activity. The 
primary cellular components involved were the cytoplasm, 
nucleoplasm, Atg1/ULK1 kinase complex, nucleus, and 
phage assembly site. Molecular functions were predominantly 
related to protein binding, regulation of protein kinase activity, 
ubiquitin-protein transferase activity, and RNA binding. KEGG 
analysis showed that differentially expressed mRNAs were 
significantly enriched in the TLR signaling pathway and NF-κB 
signaling pathway.

The study by Coto et al.37 found that variation in NFKBIZ 
is an independent risk factor for early-onset CAD. Their 
research included 609 males with early-onset CAD and 
423 healthy males in the control group. No significant inter-
group differences were observed in the allele or genotype 
frequencies of NFKB1 rs28362491 (−94 delATTG) or 
NFKBIA rs8904; however, the frequency of the NFKBIZ 
rs3217713 deletion was significantly higher in the CAD group 
compared to controls.37 In our study, KEGG analysis indicated 
the NF-κB signaling pathway plays a role in the variation of 
mRNA expression, suggesting inflammation may be one of 
the underlying pathological mechanisms in CSF. However, 

research on the relationship between NFKBIZ and CSF is 
still in its early stages. The upregulated and downregulated 
mRNAs identified in this study (Table 2) have not been 
previously reported as being associated with CSF in the existing 
literature. Further research is needed to elucidate the specific 
mechanisms linking mRNAs to CSF.

Unlike previous research that often focused on individual 
lncRNAs or miRNAs, this study offers a more comprehensive 
perspective by integrating both lncRNA and mRNA expression 
profiles, as well as their interactions in the context of CSF. 
While earlier studies have suggested the involvement of 
lncRNAs such as MALAT1 in inflammatory responses and 
endothelial dysfunction, our findings specifically highlight 
the dysregulation of lncRNAs including ANRIL, MALAT1, and 
LINC00305 in patients with CSF, providing new insights into 
potential therapeutic targets and biomarkers.

Limitations of study
The main limitation of this study is the small sample size, 

with only three individuals in each group. This limited number 
may not adequately capture biological variability, thereby 
reducing statistical power and potentially compromising the 
generalizability of the findings. Additionally, the study did not 
include other types of non-coding RNAs, such as microRNAs, 
which may also be relevant. These limitations suggest that 
future studies with larger and more diverse cohorts are 
essential to validate these results and to fully elucidate the 
mechanisms underlying CSF.

Conclusion
In conclusion, this study confirms that lncRNAs — 

defined as transcripts longer than 200 base pairs — play 
crucial roles in CSF, with potential mechanisms primarily 
involving the modulation of inflammatory pathways 
and regulation of endothelial function. However, the 
upregulated and downregulated lncRNAs and mRNAs 
identified in this study have not been previously reported 
to be associated with CSF in literature. Further research is 
needed to clarify the specific mechanisms underlying the 
relationship between these transcripts and CSF.
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