Short Editorial

From Electrocardiogram to Magnetic Resonance Imaging – The Quest for Unrecognized Myocardial Infarction

Pedro Sousa Mateus¹⁰

Unidade Local de Saúde de Trás-os-Montes e Alto Douro, 1 Vila Real – Portugal

Short Editorial related to the article: Detection and Location of Myocardial Infarction Using Electrocardiogram: Validation by Cardiovascular Magnetic Resonance Imaging

In the article "Detection and localization of myocardial infarction using electrocardiogram: validation by cardiovascular Magnetic Resonance Imaging", the authors systematically and thoroughly analyze the relationship between the presence of pathological Q waves on the electrocardiogram (ECG) and delayed enhancement with an ischemic pattern on magnetic resonance imaging (MRI). Very relevant data on the diagnostic performance of the ECG in detecting and localizing myocardial infarction (MI) are presented, expanding the evidence accumulated in previous studies.

The authors studied two groups of patients: one consisting of patients with a documented history of MI and the other selected from diabetic patients without significant cardiac abnormalities on MRI.

The results of the present study highlight the moderate sensitivity of the ECG in diagnosing MI, in line with the study of Jaarsma et al.² but remarkably superior to the 13.2% sensitivity that was found in a recent meta-analysis of prospective cohort studies.³ It should be emphasized that the ECG showed significantly greater sensitivity for MI with more extensive areas of fibrosis and with a greater number of segments with transmural fibrosis. The higher sensitivity observed in the present study and the study by Jaarsma et al.² may be attributed to the selection of patients with larger infarct sizes, as both studies included mostly patients who experienced an ST elevation MI.

Although the presence of pathological Q waves on ECG was initially associated with transmural infarcts, MRI studies challenged this concept, reporting a closer association with the total infarct territory size rather than with transmural scars.^{4,5}

The agreement between ECG and RMI to detect the location of the myocardial scar was limited. Of note, the sensitivity of ECG was significantly lower for detecting MI in the lateral wall, a finding that corroborates previous results from smaller studies.^{6,7}

Keywords

Magnetic Resonance Imaging; Myocardial Infarction; Electrocardiography

Mailing Address: Pedro Sousa Mateus •

Centro Hospitalar de Trás-os-montes e Alto Douro EPE – Avenida da Noruega Vila Real 5000-508 – Portugal E-mail: PSMATEUS@chtmad.min-saude.pt Manuscript received February 23, 2025, revised manuscript February 28, 2025, accepted February 28, 2025

DOI: https://doi.org/10.36660/abc.20250147i

Detecting an MI in asymptomatic patients has important prognostic implications since an unrecognized MI confers an increased risk of major adverse cardiovascular events in different populations.^{3,8-10}

The prevalence of unrecognized MI varies based on the screening methods and the cardiovascular risk of the studied population. In older adults, the prevalence of unrecognized MI detected by ECG can exceed 5%.¹¹ However, in a European region with low cardiovascular risk, Ramos et al.¹² reported a prevalence of abnormal Q waves of 0.67%, but only 0.18% of confirmed MI by additional imaging methods.

In the present study, the recruitment of participants was based on patients after clinically recognized MI or with diabetes, which may limit the generalizability of the results to the general population of the country. Furthermore, ECG patterns and diagnostic performance can differ between unrecognized and clinically recognized MI. Therefore, insufficient data is present to acknowledge the use of EGG for widespread screening in non-selected populations.

On the other hand, the use of cardioprotective medications in patients with unrecognized MI was significantly lower than in patients with known MI, ¹³ so in patients with increased cardiovascular risk, an ECG could be recommended to screen for ischemic changes. However, an ECG without Q-waves may be insufficient for a correct exclusion of previous MI in diabetic and other high-risk populations. ^{10,14} The use of additional ECG parameters and/or imaging tests in these populations may potentially modify risk assessment and subsequent therapeutic interventions.

Considering the diagnostic limitations of the ECG and difficulties in accessing imaging tests, additional studies are needed to address the clinical benefits and cost-effectiveness of this approach, both in the general population and selected high cardiovascular-risk populations.

References

- Guerra MCMD, Rezende AGS, Magalhães TA, Chalela WA, Uchida AH, Fonseca RA, et al. Detecção e Localização do Infarto do Miocárdio pelo Eletrocardiograma: Validação pela Ressonância Magnética Cardiovascular. Arq Bras Cardiol. 2025; 122(3):e20240309. DOI: https://doi.org/10.36660/ abc.20240309.
- Jaarsma C, Bekkers SC, Haidari Z, Smulders MW, Nelemans PJ, Gorgels AP, et al. Comparison of Different Electrocardiographic Scoring Systems for Detection of Any Previous Myocardial Infarction as Assessed with Cardiovascular Magnetic Resonance Imaging. Am J Cardiol. 2013;112(8):1069-74. doi: 10.1016/j.amjcard.2013.05.048.
- Yang Y, Li W, Zhu H, Pan XF, Hu Y, Arnott C, et al. Prognosis of Unrecognised Myocardial Infarction Determined by Electrocardiography or Cardiac Magnetic Resonance Imaging: Systematic Review and Meta-Analysis. BMJ. 2020;369:m1184. doi: 10.1136/bmj.m1184.
- Moon JC, Arenaza DP, Elkington AG, Taneja AK, John AS, Wang D, et al. The Pathologic Basis of Q-Wave and Non-Q-Wave Myocardial Infarction: A Cardiovascular Magnetic Resonance Study. J Am Coll Cardiol. 2004;44(3):554-60. doi: 10.1016/j.jacc.2004.03.076.
- Kaandorp TA, Bax JJ, Lamb HJ, Viergever EP, Boersma E, Poldermans D, et al. Which Parameters on Magnetic Resonance Imaging Determine Q Waves on the Electrocardiogram? Am J Cardiol. 2005;95(8):925-9. doi: 10.1016/j. amjcard.2004.12.028.
- Sievers B, John B, Brandts B, Franken U, van Bracht M, Trappe HJ. How Reliable is Electrocardiography in Differentiating Transmural from Non-Transmural Myocardial Infarction? A Study with Contrast Magnetic Resonance Imaging as Gold Standard. Int J Cardiol. 2004;97(3):417-23. doi: 10.1016/j.ijcard.2003.10.025.
- Asch FM, Shah S, Rattin C, Swaminathan S, Fuisz A, Lindsay J. Lack of Sensitivity of the Electrocardiogram for Detection of Old Myocardial Infarction: A Cardiac Magnetic Resonance Imaging Study. Am Heart J. 2006;152(4):742-8. doi: 10.1016/j.ahj.2006.02.037.

- Leening MJ, Elias-Smale SE, Felix JF, Kors JA, Deckers JW, Hofman A, et al. Unrecognised Myocardial Infarction and Long-Term Risk of Heart Failure in the Elderly: The Rotterdam Study. Heart. 2010;96(18):1458-62. doi: 10.1136/hrt.2009.191742.
- Dehghan A, Leening MJ, Solouki AM, Boersma E, Deckers JW, van Herpen G, et al. Comparison of Prognosis in Unrecognized versus Recognized Myocardial Infarction in Men versus Women >55 Years of Age (from the Rotterdam Study). Am J Cardiol. 2014;113(1):1-6. doi: 10.1016/j. amjcard.2013.09.005.
- Elliott MD, Heitner JF, Kim H, Wu E, Parker MA, Lee DC, et al. Prevalence and Prognosis of Unrecognized Myocardial Infarction in Asymptomatic Patients with Diabetes: A Two-Center Study with Up to 5 Years of Follow-Up. Diabetes Care. 2019;42(7):1290-6. doi: 10.2337/dc18-2266.
- van Oortmerssen JAE, Ntlapo N, Tilly MJ, Bramer WM, den Ruijter HM, Boersma E, et al. Burden of Risk Factors in Women and Men with Unrecognized Myocardial Infarction: A Systematic Review and Meta-Analysis. Cardiovasc Res. 2024;120(14):1683-92. doi: 10.1093/cvr/ cva-188
- Ramos R, Albert X, Sala J, Garcia-Gil M, Elosua R, Marrugat J, et al. Prevalence and Incidence of Q-Wave Unrecognized Myocardial Infarction in General Population: Diagnostic Value of the Electrocardiogram. The REGICOR Study. Int J Cardiol. 2016;225:300-5. doi: 10.1016/j.ijcard.2016.10.005.
- Levitan EB, Gamboa C, Safford MM, Rizk DV, Brown TM, Soliman EZ, et al. Cardioprotective Medication Use and Risk Factor Control Among US Adults with Unrecognized Myocardial Infarction: The REasons for Geographic And Racial Differences in Stroke (REGARDS) Study. Vasc Health Risk Manag. 2013;9:47-55. doi: 10.2147/VHRM.S40265.
- Andrade JM, Gowdak LH, Giorgi MC, Paula FJ, Kalil-Filho R, Lima JJ, et al. Cardiac MRI for Detection of Unrecognized Myocardial Infarction in Patients with End-Stage Renal Disease: Comparison with ECG and Scintigraphy. AJR Am J Roentgenol. 2009;193(1):25-32. doi: 10.2214/AJR.08.1389.

