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Abstract

Background: Heart failure (HF) is a disease associated with an important type of morbidity and mortality. The 
electrocardiogram (ECG), one of the tests used to evaluate HF, is low-cost and widely available.

Objective: To evaluate the performance of an artificial intelligence (AI) algorithm applied to ECG to detect HF 
and compare it with the predictive power of major electrocardiographic alterations (MEA).

Methods: This work is a diagnostic accuracy cross-sectional study.  All participants were from the Longitudinal 
Study of Adult Health (Estudo Longitudinal da Saúde do Adulto - ELSA-Brasil) and presented a valid ECG and 
echocardiogram (ECHO). The algorithm estimated probability values for left ventricular systolic dysfunction 
(LVSD). The assessed endpoint was left ventricular ejection fraction (LVEF) <40% in the ECHO. Sensitivity, 
specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), 
negative likelihood ratio (LR-), and diagnostic odds ratio (DOR) were determined for both the algorithm and the 
MEA. The area under the ROC curve (AUC-ROC) for the algorithm was calculated.

Results: In the analytical sample of 2,567 individuals, the prevalence of LVEF <40% was 1.13% (29 individuals). 
The values obtained for sensitivity, specificity, PPV, NPV, LR+, LR-, and DOR for the algorithm were 0.690, 0.976, 
0.244, 0.996, 27.6, 0.32, and 88.74, respectively. For the MEA, the values were 0.172, 0.837, 0.012, 0.989, 1.09, 
0.990, and 1.07, respectively.  The AUC-ROC of the algorithm to predict the LVEF <40% was 0.947 (95% CI: 
0.913 – 0.981).

Conclusion: The AI algorithm performed well in detecting LVSD and can be used as a screening tool for LVSD.
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Introduction
Heart failure (HF) is among the top three causes of 

cardiovascular disease (CVD) in the world.1 It is a complex 
syndrome with high morbidity and high costs for the 
health system,2-4 with a high in-hospital mortality rate.1,5-

7 The echocardiogram (ECHO) is a highly valid tool for 
diagnosis, enabling the calculation of the left ventricular 
ejection fraction (LVEF).  This parameter is essential for the 
classification of HF with reduced ejection fraction (LVEF 
<40%), slightly reduced or intermediate ejection fraction 
(HFrEF – LVEF between 40 and 49%), or preserved ejection 

fraction (HFpEF – LVEF ≥ 50%), and has therapeutic and 
prognostic implications.4,5

Although ECHO is the main tool for diagnosing and evaluating 
HF in low and middle-income countries, its availability for 
widespread use across the entire eligible population is still a 
challenge. One of the strategies to overcome this problem is the 
improvement of more accessible tools to evaluate at-risk patients 
who would benefit from additional propedeutics.6 Among these 
tools, the ECG, a low-cost and widely available test, is traditionally 
used in the initial assessment when HF is suspected. However, 
to diagnose this syndrome, the ECG has limited accuracy,3,4,7 
requiring improvements to be used for this purpose.

The use and dissemination of AI has increased in recent years, 
and this is no different in the healthcare sector.8 Among the 
areas of AI, machine learning (ML) has stood out in applications 
in the medical field.9,10 The number of AI studies applied to 
cardiology has increased significantly in recent years11 with possible 
applications in the assessment of cardiovascular age,12 serum 
potassium levels, detection of silent atrial fibrillation (AF), detection 
of hypertrophic cardiomyopathy,13 prediction of hypotension in 
intensive care unit (ICU)14 patients, and diagnosis of HF based 
on ECG readings.15-24 
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Accuracy data from AI algorithm and MEA for detecting LVSD (LVEF < 40%). AI: artificial intelligence; MEA: major electrocardiographic 
alterations; LVSD: left ventricular systolic dysfunction; LVFE: left ventricular ejection fraction; ELSA – Brasil: Brazilian Longitudinal 
Study of Adult Health; ECHO: echocardiogram; ECG: electrocardiogram; PPV: positive predictive value; NPV: negative predictive value.

Central Illustration: Use of Artificial Intelligence Applied to Electrocardiogram for Diagnosis of Left Ven-
tricular Systolic Dysfunction
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The present work evaluated the accuracy of a convolutional 
neural network (CNN)25,26 algorithm, based on ECG readings, 
used to predict individuals who have left ventricular systolic 
dysfunction (LVSD), defined as LVEF <40%. The algorithm 
performance was compared to that of major electrocardiographic 
alterations (MEA) since, in clinical practice, such changes lead 
to the suspicion of LVSD and require extended investigations, 
including an ECHO exam.

A Convolutional Neural Network (CNN), also known as a 
Deep Learning algorithm, is essentially a type of deep learning 
network. This type of network captures the input signal, which 
could be an image, and assigns weights to various aspects of it.  
In doing so, the CNN is able to differentiate these aspects, which 
is crucial for forming the output signal. The architecture of such 
networks is inspired by the human brain, specifically the visual 
cortex.  In the case of ECG analysis, there may be limitations, 
such as the quality of the tracing due to electrode positioning, 
interference, and other factors.  These issues can impact the 
model’s accuracy and its application under diverse conditions 
for obtaining an ECG.

Methods

Study design and participants
This is a diagnostic accuracy cross-sectional study 

nested in the Longitudinal Study of Adult Health (Estudo 

Longitudinal da Saúde do Adulto – ELSA-Brasil).27 To be 
included in the study, individuals were required to have a 
valid ECG and ECHO in addition to LVSD probability data 
estimated by the algorithm. 

Development of the Convolutional Neural Network (CNN)
To develop the CNN, 385,601 ECGs were paired 

with their respective ECHOs.  Internal validation was 
conducted with interns at the Yale New Haven Hospital.  
External validation was conducted with individuals from 
five centers, including ELSA-Brasil. A CNN model based 
on the EfficientNet-B3 architecture was used to evaluate 
participants’ ECGs. This type of architecture requires 300 
x 300 pixel images, includes 384 layers, and has more 
than 10 million trainable parameters. This algorithm was 
developed and validated at Yale New Haven Hospital 
between 2015 and 2021.

Traditionally, algorithms developed for ECG evaluation 
use the raw signal, while the algorithm used in our 
study uses the ECG image. After evaluating the ECG, the 
algorithm reports a probability value (0 -1) of whether 
or not LVSD is present. The test was considered positive 
when the prediction reported by the algorithm was greater 
than 0.1 (10%). As the algorithm was used for screening 
purposes in this study, this cutoff point was chosen, which 
offered a 90% sensitivity in the original article.24
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Obtaining the electrocardiogram
A conventional 12-lead ECG was performed using a digital 

device (Atria 6100, Burdick, Cardiac Science Corporation, 
USA). Readings of heart rate, duration, amplitude, and axes 
of P, QRS, and T waves, as well as QT, QTc intervals, and QT 
dispersion, were taken automatically. The Electrocardiography 
Reading Center (Centro de Leitura – CL), located at the MG 
Research Center (CI MG - UFMG), was responsible for the 
centralized reading of all ELSA-Brasil ECGs, following the 
Minnesota Code standardization.27 To guarantee the quality 
of uniform analysis, reading, and coding of exams, an ECG 
reading center (CL-ECG) was created, preceded by visits to 
two of the largest ECG reading centers, EPICARE in North 
Carolina, USA, and CARE, in Glasgow, Scotland.27

Obtaining the echocardiogram
In the ELSA-Brasil study, ECHOs were randomly 

performed on 10% of the participants, with priority given to 
those over 55 years of age. The images were acquired using 
Aplio XG devices (Toshiba), using a 2.5Hz sector transducer.  
The images were then submitted to ELSA’s Picture Archiving 
and Communication System (PACS) and accessed by 
echocardiography CL (CI RS). Echocardiographers obtained 
the ECHOS according to a standardized acquisition protocol 
in line with current research recommendations. The reading 
consisted of the qualitative analysis of echocardiographic 
findings and measurements of quantitative parameters to 
define the ELSA endpoints of interest, including size and 
geometry of the left ventricle (LV), size of the left atrium, 
LV systolic and diastolic function, presence of segmental 
dysfunction, valvular lesions, and fibrocalcific degeneration, 
and epicardial fat thickness.27 Participants who had an LVEF 
<40% in the ECHO using the Teichholz method, the test of 
choice for calculating this parameter, were classified as having 
LVSD. Of the methods available to estimate LVEF, ECHO is 
the most accessible.

Statistical analysis
Continuous variables with non-normal distribution were 

described using the median with interquartile range, while 
categorical variables were described by frequency.  The test 
used to assess the normality of the data was the Kolmogorov-
Smirnov test, and the significance level adopted was p < 
0.05.

The following metrics were calculated: sensitivity, 
specificity, positive predictive value (PPV), negative predictive 
value (NPV), accuracy, diagnostic odds ratio (DOR), positive 
likelihood ratio (LR+), and negative likelihood ratio (LR-). The 
area under the ROC curve (AUC-ROC) was also calculated 
for the algorithm, and a 95% confidence interval was used.

The software used for statistical analyses was IBM SPSS 
Statistics, version 21.

Ethical considerations
The original study from which the nested cross-sectional 

analysis is based was approved by the local ethics committee, 
logged under opinion no.  ETIC 186/06.

The terms of free and informed consent were obtained 
from all individuals in two copies, as required by resolution 
196/96 of the National Health Council, and procedures were 
only begun after the terms had been signed.

Results
After applying the selection criteria to perform the ECHO, 

of the 15,105 ELSA-Brasil individuals, 3,396 presented a valid 
ECHO and ECG. Of these, 2,567 had ECHO, ECG, and HF 
probability information calculated by the algorithm; therefore, 
the sample suffered a loss of 829 individuals. This loss most 
likely occurred during transmission to the center where the 
algorithm read the ECGs. The clinical characteristics of these 
participants are shown in Supplementary Table 1. Overall, 
these excluded participants had a higher cardiovascular risk 
profile when compared to the ELSA-Brasil population, but a 
similar profile when compared to the participants included 
in the study. The patient selection flow diagram is detailed 
in Figure 1. Study participants’ clinical features are presented 
in Table 1. The median age of participants was 62 years of 
age in both the male (45.4%) and female groups. Women 
showed higher HDL-c and total cholesterol serum levels. 
Among men, there was a higher prevalence of dyslipidemia, 
smoking, diabetes mellitus, stroke, and self-reported CVD. 
The prevalence of LVEF <40% was 1.13%. The clinical 
features of the 15,105 ELSA-Brasil participants are available 
in Supplementary Table 1.

The prevalence of MEA is described in Table 2. The main 
abnormalities were major isolated ST-T changes, major Q 
wave changes (old AMI), and full RBBB, representing 6.5%, 
3.9%, and 3.1% of changes, respectively.

LVEF distribution according to the algorithm’s prediction 
for LVSD is shown in Table 3.  Of the 29 individuals with 
LVSD, the algorithm correctly identified 20. LVEF distribution 
according to the presence of MEA is shown in Table 4. Of 
the 29 individuals with LVSD, only 5 had MEA.

The values obtained for sensitivity, specificity, PPV, NPV, 
LR+, LR-, and DOR for the algorithm and the MEA are 
provided in Table 5. The AUC-ROC was also calculated for 
the algorithm (Figure 2). The algorithm, when compared to 
MEA, presented higher values for sensitivity (0.690 versus 
0.172), specificity (0.976 versus 0.837), PPV (27.6 versus 
1.09), and DOR (88.74 versus 1.07).  The AUC-ROC was 
also calculated for the algorithm 0.947 (0.913-0.981).

Discussion
In this study with 2,567 individuals, the performance 

of the AI algorithm to predict LVSD was superior to MEA, 
as demonstrated by the accuracy tests. For sensitivity, 
the algorithm performed significantly better than the 
MEA, 69.0% versus 17.2%, respectively. For specificity, 
the algorithm also showed a better performance, 97.6% 
versus 83.7% for MEA. The LR+ for the algorithm was 
27.6, significantly increasing the post-test likelihood of 
LVSD in the presence of a positive test. For MEA, the 
LR+ value was 1.09; that is, its presence has almost no 
impact on the post-test likelihood for LVSD. Another very 
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significant metric for the algorithm was the DOR, with a 
value of 88.74, meaning that an individual with LVSD is 
88 times more likely to have a positive test, according to 
the algorithm. Finally, the AUC-ROC of the algorithm was 
0.947, showing that it has a good ability to discriminate 
sick individuals from healthy individuals.

In our study, the prevalence of LVSD was 1.13%, and 
the artificial intelligence (AI) algorithm developed showed 
a sensitivity of 69% and a specificity of 97.6%. The low 
prevalence resulted in a low PPV of 24.4%, meaning a very 
high proportion of false positives and an NPV of 99.6%. 
To illustrate this consideration, in a hypothetical scenario 
of a population in which the prevalence of LVSD is higher, 
i.e., symptomatic individuals and those with risk factors, 
the PPV will be higher, resulting in an increased ability to 
identify truly diseased individuals, albeit at the expense 
of a slightly lower NPV, but without significant impact. For 
example, in a hypothetical sample where the prevalence 
of LVSD was 10%, the PPV would significantly increase 
from 24.4% to 79%, while the NPV would have a minimal 
decrease (99.6% to 96%).

We suggest some reasons why the algorithm has a better 
performance when compared to MEA. First, as already 
mentioned, the CNNs are used to recognize image patterns 
and evaluate different changes (or patterns) than those that 
doctors traditionally take into account. It is most likely that the 
explanatory nature of this model does not involve the analysis 
of electrocardiographic changes traditionally recognized 
in clinical practice, given their low accuracy in our study.  
Furthermore, the algorithm can establish relationships between 
these patterns, giving greater power to its predictions.  Second, 
the algorithm used in this study is highly specific; that is, it was 
designed to evaluate the ECG (input) and provide a prediction 
value (output). This, combined with more robust hardware 

and the large amount of data available (big data), provides 
great computational power, culminating in more accurate 
ECG analyses.  Finally, a CNN learns from thousands of ECGs 
with minimal data loss.  Conversely, a doctor, throughout 
training, is exposed to a much smaller number of ECGs, and 
much of the viewed data is lost due to a natural limitation of 
human memory. 

Other studies have evaluated the performance of AI in 
diagnosing LVSD (LVEF <40%) and have shown similar results. 
Attia et al., in a study carried out at the Mayo Clinic, which 
involved ECGs from over 98,000 patients, found sensitivity, 
specificity, and AUC-ROC of 86.3%, 85.7%, and 0.93, 
respectively.18 Cho et al. evaluated 3,470 ECGs from 2,908 
patients, finding sensitivity, specificity, and AUC-ROC of 0.915, 
0.911, and 0.961, respectively.19 Finally, Sangha et al., using 
the same algorithm evaluated in our study, applied to more 
than 385,000 ECGs from 6 different centers, one of which 
was ELSA-Brasil, obtained sensitivity, specificity, and AUC-ROC 
of 0.891, 0.900, and 0.949, respectively.  Furthermore, they 
concluded that the V2 and V3 regions were the most important 
for calculating LVSD prediction.24

Our work presents some strengths.  First, ELSA-Brasil has 
a robust database with 15,105 individuals.  This allowed us 
to have a large sample size (2,567 participants), making our 
findings sound.  Second, the variables used in our study are 
reliable, as they were collected by a team properly trained 
at the CLs. Third, in our study, the prevalence of LVSD was 
1.13% and was thus similar to the prevalence in Brazil.  
In the studies evaluated for this work, the prevalence of 
LVSD was at least 5 times higher than in our population.  
Therefore, the algorithm showed good performance, even 
in a scenario of a low prevalence of the disease.  However, the 
low prevalence may overestimate the NPV obtained.  Fourth, the 
ECG is a low-cost and widely available test, which would allow the 

Figure 1 – Flow chart of the participant selection. ELSA-Brasil: Longitudinal Study of Adult Health; ECHO: echocardiogram; 
ECG: electrocardiogram; LVSD: left ventricular systolic dysfunction; LVEF: left ventricular ejection fraction.
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Table 1 – Study participants’ clinical features 

General 
population Men Women

Number 2567
1166

(45.4%)
1401

(54.6%)

Age (years), 
median and 
IQ (25-75)

52
(56 – 66)

62
(56.0 – 67.0)

62
(55.0 – 66.0)

Systolic blood 
pressure, 
median, and 
IQ (25-75)

123.50
(113.00 – 
136.50)

126.5
(116.37 – 
139.50)

121
(110.00 – 
134.50)

HDL 
cholesterol 
(mg/dL), 
median and 
IQ (25-75)

52.90
(44.73 – 
62.89)

46.54
(41.10 – 
54.72)

58.35
(49.27 – 
68.34)

Total 
cholesterol, 
mg/dL median 
and IQ (25-75)

198.10
(172.91 – 
226.19)

192.29
(167.10 – 
219.41)

202.94
(178.72 – 
232.00)

Fasting blood 
glucose  
(mg/dL), 
median and  
IQ (25-75)

107.00
(100.00 – 
117.00)

110
(103.00 – 
121.00)

105
(98.00 – 
114.00)

Dyslipidemia (%) 55.7 50.9 59.7

Systemic 
arterial 
hypertension 
(%)

49.5 53.6 46.1

Smoking (%) 10.0 11.8 8.4

Diabetes 
Melitus (%)

21.9 26.4 18.2

Peripheral 
artery disease 
(%)

5.6 5.3 5.9

Stroke (%) 1.9 2.3 1.5

Self-reported 
cardiovascular 
disease (%)

10.9 14.1 8.3

Table 2 – Major electrocardiographic alterations and their 
frequencies, according to the Minnesota code

Alteration Frequency 
(%)

Isolated major ST-T alterations 6.5

Major Q wave alterations  
(old/prevalent AMI) 

3.9

Complete right bundle branch block 3.1

Major QT interval prolongation 2.2

Complete left bundle branch block 1.0

Atrial fibrillation/Flutter 0.9

Nonspecific intraventricular block 0.9

Left ventricular hypertrophy plus ST-T 
alterations  

0.8

Minor Q wave changes plus ST-T changes 
(possible previous AMI)

0.4

Ventricular pre-excitation 0.1

Artificial pacemaker 0.1

Right bundle branch block with anterior 
superior divisional block 

0.1

Brugada pattern 0.0

3rd-degree atrioventricular block 0.0

2nd-degree atrioventricular block 0.0

Ventricular fibrillation/asystole 0.0

Supraventricular tachycardia 0.0

Table 3 – Distribution of AI algorithm prediction values 
according to LVEF

LVEF (%)

< 40 ≥ 40

AI algorithm 
prediction 
LVEF (%)

≥10 20 62

<10 9 2476

AI: artificial intelligence; LVEF: left ventricular ejection fraction.

algorithm to be used on a large scale.  In Brazil, there are around 
42,000 Basic Health Units (BHUs) and more than 460 Emergency 
Care Units (Unidade de Pronto Atendimento – UPA).  In practically 
all of these, there are one or more electrocardiographs.  According 
to the National Telehealth Program, Brasil Redes, there are 
6,000 telehealth points.  Therefore, ECGs from BHUs and UPAs 
could be transmitted to telehealth points and evaluated by the 
AI algorithm, working with an HF screening program.  Those 
individuals classified as positive by the algorithm would then be 

referred for cardiological evaluation and have priority for ECHO.  
However, our data presented here were validated in an outpatient 
scenario.  Fifth, this is one of the first studies evaluating the use 
of AI to diagnose HF in a Brazilian population.  Furthermore, 
sixth, it compares the accuracy of MEA to that of AI in diagnosing 
LVSD.  Finally, for the development of the algorithm, a training 
phase is required in which ECGs and ECHO are paired so that the 
algorithm can detect patterns and create its rules for calculating 
the probability of LVSD.  Therefore, the time interval between the 
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Table 4 – Distribution of major alterations on ECG according 
to the LVEF

LVEF (%)

< 40 ≥ 40

Major ECG 
alterations

Present 5 413

Absent 24 2125

LVEF: left ventricular ejection fraction; ECG: electrocardiogram.

Table 5 – Sensitivity, specificity, PPV, NPV, LR+, LR-, and 
DOR for the CNN algorithm and major alterations in the ECG.  
AUC-ROC for the CNN algorithm

Parameter (%) CNN algorithm Major ECG 
alterations

Sensitivity (%) 69.0 0.172

Specificity (%) 97.6 0.837

Positive predictive 
value (%)

24.4 0.012

Negative predictive 
value (%)

99.6 0.989

Positive  
likelihood ratio

27.6 1.09

Negative  
likelihood ratio

0.32 0.99

Diagnostic  
odds ratio

88.74 1.07

AUC-ROC
0.947 

(95% CI 
0.913 – 0.981)

NA

NA: not applicable; CNN: Convolutional Neural Network; AUC-
ROC: Area under the Receiver Operating Characteristic curve; 
ECG: electrocardiogram.

ECG and ECHO must ensure that these tests reflect the patient’s 
current clinical condition.  In our study, the time interval between 
the ECG and ECHO was short, ensuring that the tests assessed 
individuals in very similar if not identical, clinical conditions.

Our study has some limitations.  First, we do not know how the 
algorithm will perform when faced with ECGs not collected with 
the same technical rigor as ELSA-Brasil.  The correct positioning 
of cardiac leads is essential for a reliable analysis.  Second, the 
exams analyzed in this study were from outpatients; therefore, 
we do not know how the algorithm will perform in emergency 
scenarios, and further studies in this regard are necessary. 

Conclusion
The use of AI associated with ECG has the potential to 

impact the HF scenario in Brazil positively.  Its use could 

allow for an early diagnosis of HF as well as its treatment, 
with a potential reduction in mortality and morbidity 
(hospitalization costs, absenteeism, disability pensions, 
improvement in quality of life) due to CVDs. 

Since this is a new technology, further studies are 
needed to assess the accuracy of this algorithm in analyzing 
ECGs obtained in real-world situations.  Hence, there is 
a need for prospective studies to validate the application 
of this technology in different clinical scenarios, ensuring 
its applicability and impact on daily medical practice.
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