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Abstract
 Exercise training programs improve exercise capacity and quality of life (QoL) in patients with coronary 

artery disease (CAD). Although artificial intelligence (AI) has been used to design such programs, there are still few 
studies evaluating their effectiveness.

Objectives: This study compared the effects of technology-based and traditional programs for cardiac rehabilitation 
(CR) on exercise capacity and participation in patients with CAD using AI for data analysis.

Methods: A total of 52 patients with CAD were randomly assigned to three groups: i) telerehabilitation group (TRG) 
(n=18); ii) mobile application group (MAG) (n=13); and iii) control group (CG), which received only physical activity 
recommendations (n=21). TRG and MAG participants completed a 12-week program with calisthenic and resistance 
exercises three times a week. Exercise capacity was assessed using the Incremental Shuttle Walk Test (ISWT), and 
QoL was measured with the Short Form-36 (SF-36). Patient feedback was analyzed using a fine-tuned BERT-based 
natural language processing (NLP) model. Anomaly detection methods were applied to find mismatches between self-
reported adherence and ISWT results. Statistical significance was set at p<0.05.

Results: Both TRG [44.4% female] (Δ=87.2±15.2 m) and MAG [50% female] (Δ=89.4±70.4 m) had significant ISWT 
improvements compared to CG [47.6% female] (Δ=10.9±28.2 m) (p=0.001). Adherence was higher in TRG (100%) 
and MAG (80%) than in CG (30%) (p<0.001). Patient-reported satisfaction, analyzed via NLP, showed a significant 
positive correlation with ISWT improvements (r=0.75, p<0.001). Findings show the potential of AI to support outcome 
assessment in CR.

Conclusions: Technology-based CR programs improve exercise capacity and adherence in patients with CAD, supporting 
the use of AI-driven tools. NLP analysis helped link patient feedback to exercise outcomes and detect inconsistencies, 
showing its value in enhancing CR evaluation.
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Introduction
Programs for cardiac telerehabilitation (CTR) have been 

shown to be of comparable benefit and validity to traditional, 
in-person rehabilitation for patients.1 Beatty et al. confirmed 
that mobile technology is both reliable and acceptable for use 
in cardiac rehabilitation (CR) for patients with ischemic heart 
disease.2 Using technology in CR helps improve access and 

participation. Research shows that exercise-based programs 
for CR can increase exercise capacity, strengthen peripheral 
muscles, and improve quality of life (QoL) in patients with 
coronary artery disease (CAD).3,4 Clinical guidelines also 
support the safe use of both aerobic and resistance training 
in this population.1,5 Calisthenics is another common exercise 
method used in programs for CR.6

In recent years, CR has increasingly adopted technologies 
such as electrocardiography (ECG) devices for remote 
monitoring, heart rate (HR) and blood pressure (BP) sensors, 
functional capacity testing algorithms, and activity trackers.7,8 
CTR, virtual reality, and phone-based CR interventions — 
which enable patient care without direct supervision — are 
also receiving growing attention in literature.9,10

Artificial intelligence (AI) has made rapid progress in health 
care, especially in areas like interpreting radiological images, 
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Central Illustration: The Impact of Technology-Based Cardiac Rehabilitation on Exercise Capacity and 
Adherence in Patients with Coronary Artery Disease: An Artificial Intelligence Analysis
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predicting outcomes, and detecting cardiac events early.11-15 
Machine learning has also shown potential in helping design 
and evaluate the safety of exercise programs for CR.16 In 
addition, technical challenges such as algorithm transparency, 
data security, and ethical concerns about patient privacy 
continue to limit the broader use of AI in CTR.17 More research 
and better AI model development are needed to improve 
clinical use and ensure safe, patient-centered outcomes. 
While many studies focus on using patient data to personalize 
exercise programs for individuals with CAD, few have explored 
how AI can analyze patients’ own descriptions of how the 
programs benefit them.

Natural language processing (NLP) offers a promising way 
to extract meaningful insights from unstructured text found in 
electronic health records.18 To date, no studies have leveraged 
AI to interpret the subjective experiences of patients with CAD 
regarding the advantages of exercise-based programs for CR.

Participation in programs for CR remains low worldwide. 
One of the biggest challenges is patient nonadherence and 
dropout.19 The COVID-19 pandemic has exacerbated this 
problem, prompting health care providers to seek innovative 
solutions to increase participation, accessibility, efficiency, 
and cost-effectiveness of programs for CR.20 In the United 
States, only 20% to 30% of eligible patients participate in 
programs for CR. Among those who do start enroll, dropout 
rates range from 24% to 50%, which means many patients do 
not receive the full benefits of CR.21 To improve participation 
and adherence, health care providers have tested several 
strategies. Successful interventions include automated 
referral systems and the use of CR liaisons to help patients 
transition from hospital to outpatient care. These methods 

have been shown to significantly boost enrollment and 
program completion rates.22

However, the COVID-19 pandemic has made it even 
harder for patients to participate in CR, leading to the search 
for new ways to improve accessibility, efficiency, and cost-
effectiveness of such programs. One promising solution 
is the use of home-based and hybrid CR models, which 
combine traditional center-based rehab with remote, at-
home components. Such models have been shown to be just 
as safe and effective as traditional CR, while giving patients 
more flexibility.23

Recent studies have shown that AI can be successfully 
integrated into cardiology, especially in areas such as ECG 
analysis and nuclear cardiology imaging.24,25 However, to the 
best of our knowledge, this is the first study to apply NLP-based 
methods in the context of CR, making it a novel contribution 
to the growing intersection of AI and cardiovascular care.

This study aimed to compare the effects of technology-
based and traditional programs for CR on exercise capacity and 
participation in patients with CAD using AI for data analysis.

Methods
This prospective, randomized controlled trial was conducted 

between April 2022 and May 2024 at the Department of 
Cardiorespiratory Physiotherapy and Rehabilitation, Faculty 
of Physiotherapy and Rehabilitation, Hacettepe University.

Patients with a diagnosis of CAD who visited the cardiology 
outpatient clinic were screened for eligibility. Those diagnosed 
with CAD by coronary angioplasty, with negative troponin 
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levels, stable clinical status, and a symptom-limited treadmill 
test (modified Bruce protocol) showing no cardiac symptoms 
or ECG abnormalities, were referred to a physical therapist 
for CR and enrolled in an exercise program.

Inclusion criteria were i) clinically stable status; ii) age 
between 40 and 70 years; iii) access to online exercise 
training; and iv) ownership of an iOS- or Android-compatible 
smartphone.

Exclusion criteria were i) diagnosis of chronic heart failure 
(New York Heart Association [NYHA] class III or IV); ii) ≥50% 
stenosis of any major coronary artery; iii) any coronary event or 
surgical revascularization in the past 12 months; iv) left ventricular 
ejection fraction (LVEF) <40%; v) end-stage renal disease; vi) 
acute myocarditis or pericarditis; vii) uncontrolled hypertension; 
viii) chronic lung disease; ix) orthopedic or neurological conditions 
that would prevent participation in exercise or testing; x) sustained 
ventricular tachycardia; xi) uncontrollable atrial fibrillation; or xii) 
high-grade atrioventricular block.

Participants were evaluated at the beginning and at the end 
of the 12-week exercise program. All assessments followed the 
same order and were conducted according to the standards 
set by the lead physical therapist. Demographic, clinical, and 
exercise-related data were collected.

After the baseline evaluations, patients who met the 
inclusion criteria and agreed to participate were randomly 
assigned to one of three groups using the online tool available 
from https://www.graphpad.com/quickcalcs/randomize1.cfm. 
The telerehabilitation group (TRG) performed calisthenic and 
resistance exercises under the remote supervision of a physical 
therapist through video conferencing. The mobile application 
group (MAG) followed the same exercises individually guided 
by videos in a mobile app. The control group (CG) followed a 
standard home-based exercise program without supervision.

The Incremental Shuttle Walk Test (ISWT) was used to 
measure exercise capacity due to its proven validity and 
reliability in patients with CAD.26 It consists of 12 levels, 
during which participants gradually increase their walking 
speed every minute. An auditory signal guides them to walk 
back and forth between two cones placed ten meters apart, 
and the total distance covered is recorded.

The total number of exercise sessions completed by 
participants in the TRG was recorded. For the MAG, session 
attendance was tracked through notifications automatically 
sent to the physical therapists after each exercise session. 
Participants in the CG were asked to keep an exercise diary 
to record the days they engaged in physical activity.

To assess QoL, the Short Form-36 (SF-36) was administered 
through an interview. The SF-36 is a self-report questionnaire 
consisting of 36 items designed to evaluate an individual’s 
overall health status. It covers eight domains: physical 
functioning (PF), role-physical (RP), bodily pain (BP), general 
health (GH), vitality, social functioning (SF), role-emotional 
(RE), and mental health (MH).27

Exercise training protocol
Participants in the TRG followed an online exercise 

program under the supervision of a physical therapist. Those 

in the MAG group exercised independently using videos 
provided through a mobile app installed on their devices 
by the physical therapist. Each session included a warm-up 
and cool-down period.

During the first 4 weeks, participants performed calisthenic 
and postural exercises. Between weeks 4 and 8, upper and 
lower body resistance training was added to the calisthenic 
routine. Resistance exercises were done using elastic bands 
selected based on each individual’s muscle strength. Exercise 
intensity was adjusted by changing the number of repetitions 
and sets, with at least 1 min of rest allowed between sets.

From weeks 9 to 12, the difficulty of the exercises increased 
progressively according to each participant’s fitness level. All 
participants in TRG and MAG completed the exercises three 
times per week for 12 weeks (Figure 1, Supplementary File S1). 
Participants in CG were advised to follow the World Health 
Organization Physical Activity Guidelines, which recommend 
150-300 minutes of moderate-intensity or 75-150 minutes of 
vigorous-intensity physical activity per week.28

Participants in the TRG were monitored for fatigue, leg 
fatigue, and shortness of breath using the modified Borg scale 
(mBS), along with self-measured BP before and after each 
exercise session. Exercise intensity was adjusted to maintain a 
perceived exertion level between 4 and 6 on the mBS. HR was 
continuously monitored using a smartwatch (Mi Smart Band 
4, Anhui Huami Information Technology Co., Ltd.), ensuring 
participants reached 60%-75% of their maximum HR (HRmax) 
and maintained an mBS score of 4 to 6 during exercise.29 All 
devices were calibrated before being given to participants.

Participants in MAG self-reported fatigue, leg fatigue, and 
shortness of breath using the mBS before and after each 
session, following video instructions on their phones. They 
also measured and recorded their HR and BP using a provided 
smartwatch and BP monitor. The mobile app included a secure 
login system to protect patient privacy.

Artificial intelligence
The effectiveness of the prescribed exercises was evaluated 

through regular patient feedback about their exercise 
experience. Open-ended questions in a questionnaire 
were used to collect subjective responses, which were then 
analyzed using AI and machine learning techniques to extract 
quantitative insights.

To identify potential outliers, anomaly detection methods 
were applied in cases where patients reported consistent 
participation but showed limited improvement in ISWT 
performance — for example, an increase of less than 70 
meters, even though 95% of compliant participants improved 
by at least that amount.

A pre-trained transformer model — NLPtown/BERT-
base-multilingual-uncased-sentiment — was used to assess 
the emotional tone of each patient’s feedback (BERT = 
Bidirectional Encoder Representations from Transformers).30 
Responses to the open-ended questions were processed using 
AI and NLP techniques.

NLP analysis was performed using the BERT model to 
evaluate open-ended feedback from patients.31 It was fine-
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tuned with a domain-specific sentiment dataset focused 
on patient feedback. This dataset included subjective 
evaluations of exercise difficulty, perceived benefits, 
adherence challenges, and overall satisfaction with the CR 
program. It was built using anonymized patient reviews and 
structured feedback from previous clinical studies, ensuring 
a diverse set of sentiment expressions.

The model’s performance was validated using k-fold cross-
validation, achieving an average F1-score of 0.89, indicating 
strong reliability in sentiment classification. NLP analysis 
focused on two main aspects: overall satisfaction with the 
program and reports of exercise difficulty or ease.

For each patient’s response, the sentiment analysis pipeline 
assigned a sentiment label and a corresponding score from 1 
to 5 (1 = highly negative, 5 = highly positive) representing 
the intensity of the emotional tone.

Every step was taken to protect data from third party access. 
Compliance was monitored regularly.

Statistical analysis
Statistical analysis was performed using IBM SPSS software 

(Version 20.0, IBM Inc.). A pilot study showed that at least 11 
participants per group were needed to achieve 95% power, 
with a 5% chance of type I error and an effect size of 1.76 for 
the primary outcome (ISWT distance).

The Shapiro-Wilk test was used to assess whether data 
followed a normal distribution. Continuous variables with 
normal distribution were reported as mean ± standard 
deviation (SD), while those without normal distribution were 
presented as median and interquartile range. Categorical 
variables were reported as absolute (counts) and relative 
frequencies (percentages).

For comparisons within each group, the paired samples 
t-test was used for normally distributed data, and the Wilcoxon 
signed-rank test was used for nonnormal data. To compare 
data between groups, one-way analysis of variance (ANOVA) 
was used for normally distributed variables, with Tukey’s 

honestly significant difference (HSD) test for post hoc pairwise 
comparisons. For nonnormal data, the Kruskal-Wallis test was 
used, followed by the Dunn’s test for pairwise comparisons. 
Categorical variables were analyzed using the chi-square test, 
or Fisher’s exact test when expected counts were below 5.

The Pearson’s correlation coefficient was used to assess the 
relationship between patients’ natural language feedback on 
the benefits of exercise training and their changes in ISWT 
performance. An intention-to-treat analysis was applied 
to include pre-exercise data from participants who did 
not complete the program. A p-value of 0.05 or less was 
considered statistically significant.

Results
Out of 147 patients with CAD screened at the cardiology 

outpatient clinic of the Faculty of Medicine, Hacettepe 
University, 55 met the inclusion criteria and agreed to 
participate in the study. Three participants from the MAG 
group withdrew, and the study was completed with a total 
of 52 participants. Figure 2 presents the study flow diagram.

Table 1 shows demographic and clinical characteristics 
of patients. There were no statistically significant differences 
between groups in age, body weight, height, body mass index 
(BMI), waist-hip ratio, cardiovascular risk factors, or metabolic 
equivalent of task (MET) values from the stress test.

No statistically significant differences were found between 
groups in ISWT distance, HR, systolic and diastolic BP, 
dyspnea, or general fatigue levels (measured by the modified 
Borg scale) before the start of exercise training (Table 2). 
Both TRG and MAG showed similar improvements in several 
SF-36 QoL subscales (ie, PF, BP, GH, SF, vitality, RE, and MH) 
compared to the control group. Both groups also showed 
better results in the percentage of expected ISWT distance 
than the control group.

These findings suggest the TRG and MAG interventions 
provided similar benefits in improving QoL and functional 
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Figure 1 – Flow diagram of patient inclusion in the study. AI: artificial intelligence; CG: control group; CTR: cardiac telerehabilitation; 
ISWT: Incremental Shuttle Walk Test; MAG: mobile application group; NLP: natural language processing; PT: physical therapist; SF-36: 
Short-Form-36; TRG: telerehabilitation group.
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capacity. In addition, TRG showed a significantly greater 
percentage increase in expected ISWT distance compared 
to the MAG group (Table 2).

General fatigue and dyspnea scores, measured by the 
modified Borg scale, showed no significant differences 
between or within groups before and after the exercise 
program. Likewise, systolic and diastolic BP remained 
unchanged across and within groups (Table 2). Such results 
suggest these physiological measures stayed stable throughout 
the intervention in all groups.

Changes in HR (ΔHR) before and after exercise, as well as 
the percentage of HRmax (%HRmax), were significantly lower 
in the TRG after the exercise program and also compared to 
the MAG and CG (Table 2). The CG showed no significant 
changes in exercise capacity measures (Table 2).

The TRG completed 100% of the planned sessions, the 
MAG completed 80%, and the CG completed 30%. Both 
the TRG and MAG had significantly higher attendance rates 
compared to the CG.

Baseline SF-36 subscale scores were similar across all groups 
(Table 3). After the exercise program, both the TRG and MAG 
showed significant improvements in the SF-36 subscales for 
PF, BP, GH, vitality, SF, RE, and MH compared to their baseline 
scores (Table 3). The CG showed no significant changes in any 
SF-36 subscale after the intervention (Table 3).

When comparing the changes between groups, both the 
TRG and MAG had significantly greater improvements than 
the CG in PF, BP, GH, Vitality, SF, RE, and MH (Table 3). 
There were no statistically significant differences between 
the TRG and MAG in any of the SF-36 subscales (Table 3, 
Central Illustration).

Natural language processing plus artificial intelligence
A total of 52 patients with CAD shared subjective feedback 

about the benefits of exercise program. Sentiment scores were 
distributed in the following way: 55% scored 5, 2% scored 4, 
12% scored 3, 12% scored 2, and 19% scored 1.

According to the ISWT, a minimum improvement of 70.0 
meters (95% CI: 51.5-88.5 m) was considered a positive 
outcome.32 In this study, 59.62% of participants exceeded 
this threshold, with 51.5 meters used as the reference value. 
Among those who surpassed the threshold, 75% reported high 
satisfaction (a score of 5), while only 25% of those below the 
threshold reported high satisfaction.

There was a strong positive correlation between patient-
reported satisfaction and improvement in ISWT performance 
(r=0.75, p<0.001). A moderate positive correlation was also 
found between the number of exercise sessions completed 
and satisfaction scores (r=0.410).

To further explore patient satisfaction and improvement 
using NLP analysis, sentiment trends were examined 
across subgroups based on exercise adherence and ISWT 
performance. A closer look at outlier cases showed that some 
patients who reported high satisfaction despite limited ISWT 
gains often highlighted psychological benefits (eg, as increased 
motivation, reduced anxiety, and a greater sense of well-being) 
rather than physical improvements.

The model found a significant relationship between 
patient-reported satisfaction and objectively measured 
exercise outcomes with a 95% CI. Anomaly detection 
techniques, including clustering- and distance-based 
methods, were used to identify mismatches between 
subjective satisfaction and actual performance. The model 
flagged anomalies in 10% of patients who reported high 
satisfaction despite showing minimal improvement in 
ISWT results.

Figure 3 shows the emotion map created through anomaly 
detection and the distribution of patient satisfaction scores in 
relation to the reference value.

Discussion
A previous review of literature shows that integrating AI into 

CTR has the potential to support early detection of cardiac 
events, improve monitoring of home-based programs, and 
enhance clinical decision-making.33 For example, wearable 
devices used in CTR can accurately assess a patient’s functional 
capacity through AI-driven algorithms.34

In this study, NLP was applied to demonstrate the 
effectiveness of technology-based CR. The strong 
correlation between exercise capacity and the results of 
NLP-based AI analysis suggests that patients’ benefits from 
the program are reflected in both subjective feedback 
and objective outcomes. However, the NLP analysis also 
identified some anomalies — cases where patient-reported 
experiences did not align with their measured physical 
improvements. Such mismatches may be explained by 
individual perception, psychological factors, or current 
limitations of NLP models in fully understanding the 
complexity of patient narratives.

Recognizing and interpreting these anomalies is key to 
improving AI-based assessment tools and supporting more 
personalized care. Future research should not only explore 
the broader effectiveness of NLP in CTR but also take a closer 
look at the clinical significance of these detected anomalies 
to enhance the accuracy and real-world use of AI-driven 
outcome evaluation.

Exercise training through CTR has been shown to improve 
exercise capacity in patients with CAD.35 Similarly, in our 
study, both the TRG and MAG showed significant increases 
in ISWT distance after 12 weeks of training. This supports 
current guidelines that recommend CTR as an effective way 
to improve exercise capacity in patients with CAD.1 Consistent 
with our findings, Brouwers et al. also reported increased 
exercise capacity and physical activity levels in patients with 
CAD following CTR.36

These improvements are likely due to physiological 
changes in both the cardiovascular and musculoskeletal 
systems.37 Specifically, reductions in end-exercise HR and 
%HRmax observed in the TRG suggest positive cardiovascular 
adaptations. Such results align with previous studies showing 
that exercise training improves cardiac efficiency, thereby 
allowing patients to perform the same workload at a 
lower HR.23 A decrease in HR after exercise reflects better 
cardiovascular adaptation.
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We believe the high adherence in the TRG may be due 
to the increased motivation provided by real-time feedback 
during supervised sessions.

Beyond physical function, improving QoL is also an 
important goal for patients with CAD.38 Improvements in 
physical well-being, energy, fatigue, and daily functioning 
can contribute to better disease management and long-term 
outcomes.23 In our study, both the TRG and MAG showed 
significant improvements in QoL, which aligns with findings 
by Golbus et al., who reported that digital and hybrid CTR 
programs improve QoL in cardiac patients.4

However, not all studies have found similar results. One 
study reported no change in SF-36 scores despite improved 
functional capacity in a hybrid program for CTR.39 This 
discrepancy may be due to differences in how QoL is 
measured in cardiovascular research and the limited number 
of studies focusing on QoL outcomes in CTR. We also believe 
that the longer duration of our exercise program may have 
contributed to the more noticeable improvements.

Our study also found significant improvements in emotional 
role functioning in both intervention groups, suggesting a 
positive impact on psychological well-being. This supports 
findings from a meta-analysis by Gong et al., which showed 
that programs for CTR lasting at least 3 months can reduce 
symptoms of depression and anxiety.40

Overall, the improvements in ISWT distance (ΔISWT) in our 
study were reflected in better scores across several QoL subscales.

Integrating technology into programs for CR plays a key 
role in improving patient adherence and participation. In 
our study, both the TRG and the MAG had higher attendance 
rates compared to the CG, suggesting that technology-based 
approaches are more accessible and user-friendly. The 
flexibility offered by the MAG may have further supported 
participation, allowing patients to exercise at times that best 
fit their daily routines. Previous research supports the idea 
that mobile technology can improve adherence to programs 
for CR.3,41 In our case, the mobile app likely helped by 
enabling exercise tracking, providing feedback, and keeping 
patients motivated. Such results are consistent with findings 
from Maddison et al., who reported higher participation 
rates in home-based CR compared to traditional center-
based programs.20 The convenience of exercising at home, 
with minimal equipment and no transportation costs, likely 
played a role in encouraging participation — particularly in 
the current economic climate. Since the patients in our study 
had an average exercise capacity of more than 10 METs, these 
findings are most applicable to low-risk patients with CAD.

This study has several limitations. While AI-based methods 
show promise, there are important challenges that must be 
acknowledged. One major limitation is the reliance on the 
quality and quantity of data used to train AI models. Poor 
or limited data can introduce bias and limit how well the 
findings apply to different patient populations. Additionally, 
NLP algorithms depend on language, which can vary based 
on cultural and individual differences in how patients describe 

Figure 2 – CONSORT flow diagram of patient inclusion in the study. CG: control group; CONSORT: Consolidated Standards of Reporting 
Trials; MAG: mobile application group; TRG: telerehabilitation group.
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Table 1 – Demographic characteristics of patients included in the study

Variables TRG (n=18) MAG (n=16) CG (n=21) p-value

Age (years) 60.1±7.2 56.9±5.8 61.6±1.5 0.12

Female/male 8 (44.4%)/10 (55.6%) 8 (50%)/8 (50%) 10 (47.6%)/11 (52.4%) 0.95

Weight (kg) 76.9±3.1 80.9±10.3 79.7±2.7 0.61

BMI (kg/m2) 26.2±0.6 27.3±1.9 28.5±1.1 0.12

Waist-hip ratio 0.9±0.1 0.9±0.1 0.9±0.1 0.54

Number of steps per day 3578.5 (2622.5-4345.5) 3981.5 (3418-4744.25) 3177 (3962-2585) 0.15

Exercise stress test (METs) 11.05 (10.3-13.2) 10.9 (10.1-12.8) 10.5 (9.5-11.4) 0.35

Cardiovascular risk factors

Smoking

Nonsmoker 8 (44.4%) 7 (43.75%) 10 (47.6%)

0.91Smoker 4 (22.2%) 3 (18.75%) 6 (28.6%)

Quit smoking 6 (33.3%) 6 (37.5%) 5 (23.8%)

Smoking (pack-years) 14.8±15.9 13.4±13.6 16.1±17.4 0.93

Hypertension 10 (55.6%) 8 (50.0%) 9 (42.9%) 0.73

Diabetes mellitus 4 (22.2%) 4 (25.0%) 5 (23.8%) 0.98

Dyslipidemia 14 (77.8%) 13 (81.25%) 18 (85.7%) 0.81

Physical inactivity 17 (94.4%) 13 (81.25%) 20 (95.2%) 0.28

*p<0.05, chi-square test, Fisher’s exact test, analysis of variance (ANOVA), or Kruskal–Wallis test. Data are presented as mean±SD, 
median (IQR [Q1-Q3]), or n (%). CG: control group; IQR: interquartile range; MAG: mobile application group; METs: metabolic 
equivalent of task; TRG: telerehabilitation group.

their symptoms and experiences. Another challenge is the 
interpretability of AI-generated results. For these tools to be 
useful in clinical practice, health care providers need clear, 
understandable insights they can trust and apply in decision-
making. Programs for CTR in this study focused only on exercise 
training and did not include other essential components of 
comprehensive CR, such as psychosocial support, nutrition 
counseling, medication management, and smoking cessation. 
Also, the mobile app used for exercise guidance did not allow 
for real-time monitoring of HR or BP during sessions. Most 
participants in this study were low-risk patients with CAD, which 
limits the generalizability of the findings to higher-risk groups. 
Despite these limitations, the study has notable strengths. The 
NLP-AI analysis was at least as effective as traditional assessments 
in demonstrating the benefits of CTR, showing the innovative 
potential of digital health tools in cardiac care. It also showed 
that self-guided exercise programs can be just as effective as 
traditional methods in improving exercise capacity, adherence, 
and QoL in patients with CAD.

Conclusion
This study highlights the effectiveness of AI-based analysis in 

evaluating the impact of exercise on low-risk patients with CAD. 

Both the TRG and MAG proved to be effective and feasible, 
potentially offering greater benefits than traditional methods 
in improving exercise capacity, participation, and QoL. As AI 
continues to evolve, the role of physical therapists remains 
essential, particularly in delivering patient-centered care. With 
the support of multicenter study designs, NLP-based approaches 
may become a valuable tool in CR. Further research is needed to 
assess the clinical feasibility and safety of AI-driven CR, explore 
other AI-powered methods such as virtual reality-based exercise, 
and evaluate the cost-effectiveness and practical integration of 
programs for CTR into the broader health care system.
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Table 2 – Three-month cardiac rehabilitation: between-group comparison of outcomes

Exercise capacity 
parameters

TRG (n=18) MAG (n=13) CG (n=21)

Pre-exercise 
training

Post-exercise 
training Δ Pre-exercise 

training
Post-exercise 

training Δ Pre-exercise 
training

Post-exercise 
training Δ

HR (bpm)

Pre-test 79.2±10.5 76.8±10.9a* -2.4±3.1 74.8±11.7 72.6±7.9 -2.2±5.9 85.1±13.9 84.6±11.9 -0.5±4.3

Post-test 135.6±6.6 132.1±6.3a* -3.5±5.3 136.9±5.5 137.9±4.5 0.9±3.4 133.3±5.9 134.4±4.5 1.1±4.3

%HRmax 84.8±1.6 82.6±2.9a* -2.2±3.3b,d* 84±1.6 84.2±13 0.2±1.2 84.2±2.1 84.9±2.6 0.7±2.7

DBP (mmHg)

Pre-test 73.3±7.7 70.6±6.4 -2.8±6.7 70.6±7.7 70±5.2 -0.6±5.7 70±7.7 70±6.3 0±5.5

Post-test 82.2±7.3 80±6.9 -2.2±7.3 80±8.2 79.2±5.7 -0.8±6.8 76.2±8.1 78.6±7.3 2.4±5.4

SBP (mmHg)

Pre-test 118.3±8.6 118.9±8.3 0.6±4.2 118.1±9.8 118.5±8.1 0.3±5.8 118.6±7.3 121.9±8.1 3.3±8

Post-test 148.3±9.9 148.3±2.4 0±12.4 145±6.3 146.2±12.4 1.2±12.8 146.2±9.2 149.5±8.6 3.3±11.1

General fatigue (mBorg)

Pre-test 0.5 (0-1) 0.5 (0-0.8) 0 (-0.5, 0) 0.5 (0-1) 0.5 (0.5-1) 0 (-0.5, 0.5) 1 (0-1) 0.5 (0-1) 0 (-1, 0)

Post-test 4 (3-5.75) 4.5 (3-5) 0 (-0.75, 1.75) 4 (3-5) 5 (4-5)  1 (-1, 2) 5 (3-5) 3 (3-4) 1 (-2, 0)

Dyspnea (mBorg)

Pre-test 0 (0-0) 0 (0-0) 0 (0, 0) 0 (0-0) 0 (0-0) 0 (0, 0) 0 (0-0) 0 (0-0) 0 (0, 0)

Post-test 0 (0-1) 1 (0-2) 0 (0, 2) 0 (0-0) 0 (0-1) 0 (0, 1) 0 (0-0.5) 0 (0-0.5) 0 (0, 0.5)

ISWT distance 
(m) 508.9±105.5 596.1±109.3a* 87.2±15.3b* 537.5±119.1 626.9±92.1a* 89.4±70.4c* 500.5±98.4 511.4±102 11±28.3

ISWT distance 
(%) 70.8±9.3 83.3±10.4a* 12.5±3.4b,d* 72.6±8.4 83.1±9a* 10.5±3.6c* 73.2±8.7 74.6±7.5 1.5±4.1

*p<0.05, analysis of variance (ANOVA) or Kruskal-Wallis test. Data are presented as mean±SD or median (IQR [Q1-Q3]). CG: control group; DBP: diastolic 
blood pressure; HR: heart rate; ISWT: Incremental Shuttle Walk Test; IQR: interquartile range; MAG: mobile application group; mBorg: modified Borg scale; 
SBP: systolic blood pressure; SPO2: oxygen saturation; %HRmax: percentage of maximum HR; TRG: telerehabilitation group. a: Significant difference pre- vs 
post-exercise within the same group. b: Significant difference between TRG and CG. c: Significant difference between MAG and CG. d: Significant difference 
between TRG and MAG.

Table 3 – Comparison of SF-36 QoL subscales between groups before and after exercise training

SF-36 subscales

TRG (n=18) MAG (n=13) CG (n=21)

Pre-exercise 
training

Post-exercise 
training Δ Pre-exercise 

training
Post-exercise 

training Δ Pre-exercise 
training

Post-exercise 
training Δ

Physical functioning 85 (75-88.8) 90 (86.3-95)a* 5 (0, 15)b* 80 (65-90) 95 (85-95)a* 5 (0, 10)c* 90 (75-90) 80 (75-90) 0 (-5, 5)

Role-physical 100 (75-100) 100 (100-100) 0 (0, 0) 100 (50-100) 100 (50-100) 0 (0, 0) 100 (75-100) 100 (75-100) 0 (0, 0)

Role-emotional 67 (33-100) 100 (72.3-100)a* 0 (0, 67)b* 67 (33-67) 100 (67-100)a* 33 (0, 34)c* 67 (33-100) 67 (33-100) 0 (0, 0)

Vitality 67.5 (61.3-75) 75 (70-78.8)a* 5 (0, 13.8)b* 65 (50-75) 75 (75-90)a* 10 (10, 35)c* 65 (50-75) 55 (35-75) 0 (0, 0)

Mental health 76 (62-79) 87 (76-96)a* 10 (0, 20)b* 68 (44-80) 80 (76-92)a* 8 (0, 32)c* 64 (44-76) 60 (40-68) 0 (0, 0)

Social functioning 75 (66-88) 88 (75-100)a* 0 (0, 12.8)b* 75 (63-100) 88 (75-100)a* 0 (0, 12)c* 88 (75-100) 75 (75-88) 0 (0, 0)

Bodily pain 75 (49.8-90) 85 (68-97.5)a* 10 (0, 12.3)b* 70 (55-80) 80 (68-90)a* 10 (3, 13)c* 80 (68-100) 80 (68-100) 0 (0, 0)

General health 60 (46.3-70) 75 (56.3-78.8)a* 10 (0, 18)b* 60 (45-75) 75 (75-85)a* 10 (5, 15)c* 60 (45-70) 50 (45-75) 0 (0, 5)

*p<0.05, Kruskal-Wallis test. Data are presented as median (IQR [Q1-Q3]). CG: control group; IQR: interquartile range; MAG: mobile application group; 
SF-36: Short Form-36; TRG: telerehabilitation group. a: Significant difference pre- vs post-exercise within the same group. b: Significant difference 
between TRG and CG. c: Significant difference between MAG and CG. d: Significant difference between TRG and MAG.
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Figure 3 – Scatter plot showing the relationship between NLP analysis results and changes in ISWT distance. ΔISWT: change in 
Incremental Shuttle Walk Test distance. Review scores: 1 = Did not benefit at all, 2 = Did not benefit, 3: Neither benefited nor did not 
benefit, 4: Benefited, 5: Benefited greatly. Values inside circles represent anomalies. The model identified patients who reported high 
satisfaction despite limited ISWT improvement as anomalies, which accounted for 10% of the sample.
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