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Transcatheter aortic valve replacement (TAVR), a minimally 
invasive heart surgery, was introduced by Cribier et al.1 as 
an alternative to the traditional open-heart surgery in the 
treatment of individuals with severe aortic valve stenosis and 
at high surgical risk due to advanced age or the presence 
of multiple comorbidities.2 After the first pioneering efforts, 
the advent of innovative prosthetic valves, and more 
technologically refined approaches and devices, the use of 
TAVR for patients with intermediate surgical risk has been 
a worldwide trend.3 However, variation in the prosthetic 
valve positioning and orientation post TAVR procedure can 
produce significant changes in the aortic hemodynamics and 
the corresponding stresses in the vessel wall.4 

Within the aorta, there are two categories of vessel wall 
stress. The first category of stress is the result of the friction 
between the moving blood and the vessel wall, which is 
proportional to the blood speed, moving away from the 
intimate layer of the vessel wall. This kind of stress is known 
as wall shear stress (WSS). The second category of stress is 
due to the variation in pulse pressure generated during the 
cardiac cycle. In this category, there are circumferential, axial 
and radial stress transferred to all vessel wall layers. With 
advancing age, the aorta enlarges, the arch changes shape from 
a near-perfect semicircle, and the vessel generally becomes 
more tortuous.5 Moreover, the change in the natural curvature 
of the aorta introduces secondary flow dynamics and flow 
asymmetry, which directly influence WSS distribution and 
magnitude over the vessel wall.

Among the available imaging modalities, computed 
tomography (CT) is widely considered the gold standard 
method for studying and analyzing the aorta, coronary and 
femoral arteries. Recent developments using a wide coverage 
detector design (256 or 320 slices) or high-frequency dual-
source CT have made it possible to use less contrast and a 
lower radiation dose. Although CT can present the geometrical 
and functional complexities of the aorta, it is currently limited 
to capture a snapshot of the blood flow at a defined instant 
of time during the cardiac cycle. 

On the other hand, four-dimensional (4D) flow 
magnetic resonance imaging (MRI) is a novel technique 
with the capability of assessing aortic blood flow in three-
dimensional space as a function of time, which permits the 
quantification of aortic hemodynamics.6 This new imaging 
acquisition technique may improve our understanding of 
the inherent dynamicity of aortic blood flow. However, CT 
can be improved with computational fluid dynamics (CFD) 
modeling, which can compute previously unmeasurable 
hemodynamic parameters to understand the biomechanical 
behavior of blood flow in both normal and diseased vessels.

In the absence of a readily applicable means to directly 
measure WSS, CFD has been applied in CT and MRI images 
to understand both the spatial and temporal patterns of 
WSS and the influence of aortic flow dynamics on this 
parameter.7–9 Using CT images as the input of a CFD model, 
Celis et al.10 demonstrated that small variations of the aortic 
valve tilt angle could modify the nature of the flow and 
produce changes in the distribution of the WSS over the 
aorta wall.  

CFD is a feasible method that has been used for ages11 
in determining fluid flow and 3D model of coronary arteries 
and can simulate an accurate vessel flow based on a set 
of given parameters. For incompressible fluids, most CFD 
analysis solve the Navier-Stokes and continuity equations 
that govern fluid motion. This set of equations includes 
non-linear and partial differential equations based on the 
principle of conservation of mass and momentum. Navier-
Stokes equation describes the viscous motion of fluids12 
and, according to Newton’s law of viscosity, the relationship 
between the shear stress and shear rate of a fluid, subjected 
to mechanical stress, is a constant for a given temperature 
and pressure, and is defined as the viscosity or coefficient 
of viscosity. Physiologically, this means that the blood flow 
in the cardiovascular system is equal to the change of blood 
pressure divided by the system resistance.13 

Despite the availability of powerful CFD software 
packages to model fluid flow, such as  ANSYS FLUENT, 
OpenFOAM, SIMVascular, and ADINA,14 the current CFD 
methods have large computational time cost, which prevents 
them from being used in large patient cohorts. This time 
cost basically comes from the complexity of the models, 
which need patient anatomic geometries, tissue properties, 
hemodynamics loading conditions, and proper selection 
of modeling techniques. A potential paradigm-changing 
solution to the bottlenecks in current CFD methods is to 
incorporate machine learning (ML) algorithms15 to expedite 
computational analysis, starting from geometry modeling 
to computational model setup, and simulation completion. DOI: https://doi.org/10.36660/abc.20201002
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Liang et al.16 have recently developed a novel machine 
learning approach that demonstrated the feasibility of using 
ML as a fast and accurate surrogate of CFD to estimate steady-
state hemodynamic fields of human thoracic aorta. In their 
approach, CFD is treated as a black box, and the ML algorithm 
learns the nonlinear relationship between CFD input and 
output. On average, the proposed method took minutes to 
run a CFD simulation for each aorta model, which seems to 
be fast enough for clinical applications. 

In vivo measurements of parameters hemodynamics 
and the corresponding stress in the aorta are not practical. 
Therefore, CFD is widely used to estimate these parameters, 
but it is time consuming and computationally expensive. ML 
models can be a promising alternative for CFD simulations to 
aid clinical decisions and treatment based on specific patients. 
This can lead to better clinical results in many studies, such as 
the identification of the best position and orientation of the 
prosthetic valve in the TAVR procedure.

1. 	 Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C, Bauer F, et al. 
Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for 
Calcific Aortic Stenosis. Circulation. 2002;106(24):3006–8. 

2. 	 Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, et al. 
Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who 
Cannot Undergo Surgery. N Engl J Med. 2010;363(17):1597–607.

3. 	 Morello A, Corcione N, Ferraro P, Cimmino M, Pepe M, Cassese M, et al. The 
best way to transcatheter aortic valve implantation: From standard to new 
approaches. Int J Cardiol. 2020 [Internet]. [Cited in 2020 Aug 09]. Avaiable 
from: internationaljpurnalofcardiology.com/action/showPdf pii=501’67-
5273%2820%2933563-4 

4. 	 Groves EM, Falahatpisheh A, Su JL, Kheradvar A. The Effects of Positioning 
of Transcatheter Aortic Valves on Fluid Dynamics of the Aortic Root. ASAIO 
J [Internet]. 2014;60(5):545-602.

5. 	 Farag ES, Vendrik J, van Ooij P, Poortvliet QL, van Kesteren F, Wollersheim 
LW, et al. Transcatheter aortic valve replacement alters ascending aortic 
blood flow and wall shear stress patterns: A 4D flow MRI comparison with 
age-matched, elderly controls. Eur Radiol. 2019;29(3):1444–51. 

6. 	 Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhäll C-J, Ebbers T, et al. 4D 
flow cardiovascular magnetic resonance consensus statement. J Cardiovasc 
Magn Reson. 2015;17(1):72. 

7. 	 Biasetti J, Hussain F, Gasser TC. Blood flow and coherent vortices in the 
normal and aneurysmatic aortas: a fluid dynamical approach to intra-luminal 
thrombus formation. J R Soc Interface. 2011;8(63):1449–61. 

8. 	 Jarral OA, Tan MKH, Salmasi MY, Pirola S, Pepper JR, O’Regan DP, et al. 
Phase-contrast magnetic resonance imaging and computational fluid 
dynamics assessment of thoracic aorta blood flow: A literature review. Eur J 
Cardio-thoracic Surg. 2020;57(3):438–46. 

9. 	 Callaghan FM, Grieve SM. Translational Physiology: Normal patterns 
of thoracic aortic wall shear stress measured using four-dimensional 
flow MRI in a large population. Am J Physiol - Hear Circ Physiol. 
2018;315(5):H1174–81. 

10. 	Celis D, Alvares B, Gomes DA, Ibanez I, Azevedo PN, et al. Predição 
do Mapa de Estresse em Aorta Ascendente : Otimização da Posição 
Coaxial no Implante Valvar Aórtico Percutâneo.  Arq Bras Cardiol. 2020; 
115(4):680-687.

11. 	Papadopoulos KP, Gavaises M, Pantos I, Katritsis DG, Mitroglou 
N. Derivation of flow related risk indices for stenosed left anterior 
descending coronary arteries with the use of computer simulations. Med 
Eng Phys. 2016;38(9):929–39. 

12. 	Schneiderbauer S, Krieger M. What do the Navier{\textendash}Stokes 
equations mean? Eur J Phys. 2013;35(1):15020. 

13. 	Doutel E, Pinto SIS, Campos JBLM, Miranda JM. Link between deviations 
from Murray’s Law and occurrence of low wall shear stress regions in the 
left coronary artery. J Theor Biol. 2016;402:89–99. 

14. 	Ong CW, Wee I, Syn N, Ng S, Leo HL, Richards AM, et al. Computational 
Fluid Dynamics Modeling of Hemodynamic Parameters in the Human 
Diseased Aorta: A Systematic Review. Ann Vasc Surg [Internet]. 
2020;63:336–81. Available from: http://www.sciencedirect.com/
science/article/pii/S089050961930487X

15. 	LeCun Y, Bengio Y, Hinton G. Deep learning . Nature. 2015 May 
27;521(7553):436-44.

16. 	Liang L, Mao W, Sun W. A feasibility study of deep learning for predicting 
hemodynamics of human thoracic aorta. J Biomech. 2020;99:109544. 

References

This is an open-access article distributed under the terms of the Creative Commons Attribution License

689


